Cleanup and fix issues with text encoder quants. (#10872)

This commit is contained in:
comfyanonymous
2025-11-24 22:48:53 -08:00
committed by GitHub
parent 22a2644e57
commit 25022e0b09
7 changed files with 128 additions and 102 deletions

View File

@@ -540,113 +540,115 @@ if CUBLAS_IS_AVAILABLE:
# ==============================================================================
from .quant_ops import QuantizedTensor, QUANT_ALGOS
class MixedPrecisionOps(disable_weight_init):
_layer_quant_config = {}
_compute_dtype = torch.bfloat16
class Linear(torch.nn.Module, CastWeightBiasOp):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
super().__init__()
def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False):
class MixedPrecisionOps(manual_cast):
_layer_quant_config = layer_quant_config
_compute_dtype = compute_dtype
_full_precision_mm = full_precision_mm
self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype}
# self.factory_kwargs = {"device": device, "dtype": dtype}
class Linear(torch.nn.Module, CastWeightBiasOp):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs))
else:
self.register_parameter("bias", None)
self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype}
# self.factory_kwargs = {"device": device, "dtype": dtype}
self.tensor_class = None
self.in_features = in_features
self.out_features = out_features
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs))
else:
self.register_parameter("bias", None)
def reset_parameters(self):
return None
self.tensor_class = None
self._full_precision_mm = MixedPrecisionOps._full_precision_mm
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys, error_msgs):
def reset_parameters(self):
return None
device = self.factory_kwargs["device"]
layer_name = prefix.rstrip('.')
weight_key = f"{prefix}weight"
weight = state_dict.pop(weight_key, None)
if weight is None:
raise ValueError(f"Missing weight for layer {layer_name}")
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys, error_msgs):
manually_loaded_keys = [weight_key]
device = self.factory_kwargs["device"]
layer_name = prefix.rstrip('.')
weight_key = f"{prefix}weight"
weight = state_dict.pop(weight_key, None)
if weight is None:
raise ValueError(f"Missing weight for layer {layer_name}")
if layer_name not in MixedPrecisionOps._layer_quant_config:
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
else:
quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None)
if quant_format is None:
raise ValueError(f"Unknown quantization format for layer {layer_name}")
manually_loaded_keys = [weight_key]
qconfig = QUANT_ALGOS[quant_format]
self.layout_type = qconfig["comfy_tensor_layout"]
if layer_name not in MixedPrecisionOps._layer_quant_config:
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
else:
quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None)
if quant_format is None:
raise ValueError(f"Unknown quantization format for layer {layer_name}")
weight_scale_key = f"{prefix}weight_scale"
layout_params = {
'scale': state_dict.pop(weight_scale_key, None),
'orig_dtype': MixedPrecisionOps._compute_dtype,
'block_size': qconfig.get("group_size", None),
}
if layout_params['scale'] is not None:
manually_loaded_keys.append(weight_scale_key)
qconfig = QUANT_ALGOS[quant_format]
self.layout_type = qconfig["comfy_tensor_layout"]
self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device), self.layout_type, layout_params),
requires_grad=False
)
weight_scale_key = f"{prefix}weight_scale"
layout_params = {
'scale': state_dict.pop(weight_scale_key, None),
'orig_dtype': MixedPrecisionOps._compute_dtype,
'block_size': qconfig.get("group_size", None),
}
if layout_params['scale'] is not None:
manually_loaded_keys.append(weight_scale_key)
for param_name in qconfig["parameters"]:
param_key = f"{prefix}{param_name}"
_v = state_dict.pop(param_key, None)
if _v is None:
continue
setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
manually_loaded_keys.append(param_key)
self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device), self.layout_type, layout_params),
requires_grad=False
)
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
for param_name in qconfig["parameters"]:
param_key = f"{prefix}{param_name}"
_v = state_dict.pop(param_key, None)
if _v is None:
continue
setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
manually_loaded_keys.append(param_key)
for key in manually_loaded_keys:
if key in missing_keys:
missing_keys.remove(key)
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
for key in manually_loaded_keys:
if key in missing_keys:
missing_keys.remove(key)
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward(self, input, *args, **kwargs):
run_every_op()
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
if (getattr(self, 'layout_type', None) is not None and
getattr(self, 'input_scale', None) is not None and
not isinstance(input, QuantizedTensor)):
input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype)
return self._forward(input, self.weight, self.bias)
def forward(self, input, *args, **kwargs):
run_every_op()
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
if (getattr(self, 'layout_type', None) is not None and
getattr(self, 'input_scale', None) is not None and
not isinstance(input, QuantizedTensor)):
input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype)
return self._forward(input, self.weight, self.bias)
return MixedPrecisionOps
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None):
if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config:
MixedPrecisionOps._layer_quant_config = model_config.layer_quant_config
MixedPrecisionOps._compute_dtype = compute_dtype
logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers")
return MixedPrecisionOps
return mixed_precision_ops(model_config.layer_quant_config, compute_dtype)
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None: