feat(api-nodes): network client v2: async ops, cancellation, downloads, refactor (#10390)

* feat(api-nodes): implement new API client for V3 nodes

* feat(api-nodes): implement new API client for V3 nodes

* feat(api-nodes): implement new API client for V3 nodes

* converted WAN nodes to use new client; polishing

* fix(auth): do not leak authentification for the absolute urls

* convert BFL API nodes to use new API client; remove deprecated BFL nodes

* converted Google Veo nodes

* fix(Veo3.1 model): take into account "generate_audio" parameter
This commit is contained in:
Alexander Piskun
2025-10-24 08:37:16 +03:00
committed by GitHub
parent 24188b3141
commit 388b306a2b
29 changed files with 2935 additions and 2298 deletions

View File

@@ -50,44 +50,6 @@ class BFLFluxFillImageRequest(BaseModel):
mask: str = Field(None, description='A Base64-encoded string representing the mask of the areas you with to modify.')
class BFLFluxCannyImageRequest(BaseModel):
prompt: str = Field(..., description='Text prompt for image generation')
prompt_upsampling: Optional[bool] = Field(
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
)
canny_low_threshold: Optional[int] = Field(None, description='Low threshold for Canny edge detection')
canny_high_threshold: Optional[int] = Field(None, description='High threshold for Canny edge detection')
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process')
guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process')
safety_tolerance: Optional[conint(ge=0, le=6)] = Field(
6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.'
)
output_format: Optional[BFLOutputFormat] = Field(
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
)
control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided')
preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step')
class BFLFluxDepthImageRequest(BaseModel):
prompt: str = Field(..., description='Text prompt for image generation')
prompt_upsampling: Optional[bool] = Field(
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
)
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process')
guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process')
safety_tolerance: Optional[conint(ge=0, le=6)] = Field(
6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.'
)
output_format: Optional[BFLOutputFormat] = Field(
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
)
control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided')
preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step')
class BFLFluxProGenerateRequest(BaseModel):
prompt: str = Field(..., description='The text prompt for image generation.')
prompt_upsampling: Optional[bool] = Field(
@@ -160,15 +122,8 @@ class BFLStatus(str, Enum):
error = "Error"
class BFLFluxProStatusResponse(BaseModel):
class BFLFluxStatusResponse(BaseModel):
id: str = Field(..., description="The unique identifier for the generation task.")
status: BFLStatus = Field(..., description="The status of the task.")
result: Optional[Dict[str, Any]] = Field(
None, description="The result of the task (null if not completed)."
)
progress: confloat(ge=0.0, le=1.0) = Field(
..., description="The progress of the task (0.0 to 1.0)."
)
details: Optional[Dict[str, Any]] = Field(
None, description="Additional details about the task (null if not available)."
)
result: Optional[Dict[str, Any]] = Field(None, description="The result of the task (null if not completed).")
progress: Optional[float] = Field(None, description="The progress of the task (0.0 to 1.0).", ge=0.0, le=1.0)

View File

@@ -0,0 +1,111 @@
from typing import Optional, Union
from enum import Enum
from pydantic import BaseModel, Field
class Image2(BaseModel):
bytesBase64Encoded: str
gcsUri: Optional[str] = None
mimeType: Optional[str] = None
class Image3(BaseModel):
bytesBase64Encoded: Optional[str] = None
gcsUri: str
mimeType: Optional[str] = None
class Instance1(BaseModel):
image: Optional[Union[Image2, Image3]] = Field(
None, description='Optional image to guide video generation'
)
prompt: str = Field(..., description='Text description of the video')
class PersonGeneration1(str, Enum):
ALLOW = 'ALLOW'
BLOCK = 'BLOCK'
class Parameters1(BaseModel):
aspectRatio: Optional[str] = Field(None, examples=['16:9'])
durationSeconds: Optional[int] = None
enhancePrompt: Optional[bool] = None
generateAudio: Optional[bool] = Field(
None,
description='Generate audio for the video. Only supported by veo 3 models.',
)
negativePrompt: Optional[str] = None
personGeneration: Optional[PersonGeneration1] = None
sampleCount: Optional[int] = None
seed: Optional[int] = None
storageUri: Optional[str] = Field(
None, description='Optional Cloud Storage URI to upload the video'
)
class VeoGenVidRequest(BaseModel):
instances: Optional[list[Instance1]] = None
parameters: Optional[Parameters1] = None
class VeoGenVidResponse(BaseModel):
name: str = Field(
...,
description='Operation resource name',
examples=[
'projects/PROJECT_ID/locations/us-central1/publishers/google/models/MODEL_ID/operations/a1b07c8e-7b5a-4aba-bb34-3e1ccb8afcc8'
],
)
class VeoGenVidPollRequest(BaseModel):
operationName: str = Field(
...,
description='Full operation name (from predict response)',
examples=[
'projects/PROJECT_ID/locations/us-central1/publishers/google/models/MODEL_ID/operations/OPERATION_ID'
],
)
class Video(BaseModel):
bytesBase64Encoded: Optional[str] = Field(
None, description='Base64-encoded video content'
)
gcsUri: Optional[str] = Field(None, description='Cloud Storage URI of the video')
mimeType: Optional[str] = Field(None, description='Video MIME type')
class Error1(BaseModel):
code: Optional[int] = Field(None, description='Error code')
message: Optional[str] = Field(None, description='Error message')
class Response1(BaseModel):
field_type: Optional[str] = Field(
None,
alias='@type',
examples=[
'type.googleapis.com/cloud.ai.large_models.vision.GenerateVideoResponse'
],
)
raiMediaFilteredCount: Optional[int] = Field(
None, description='Count of media filtered by responsible AI policies'
)
raiMediaFilteredReasons: Optional[list[str]] = Field(
None, description='Reasons why media was filtered by responsible AI policies'
)
videos: Optional[list[Video]] = None
class VeoGenVidPollResponse(BaseModel):
done: Optional[bool] = None
error: Optional[Error1] = Field(
None, description='Error details if operation failed'
)
name: Optional[str] = None
response: Optional[Response1] = Field(
None, description='The actual prediction response if done is true'
)