This commit is contained in:
BlenderNeko
2023-04-23 20:02:18 +02:00
10 changed files with 189 additions and 27 deletions

View File

@@ -163,13 +163,17 @@ class CrossAttentionBirchSan(nn.Module):
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
query = self.to_q(x)
context = default(context, x)
key = self.to_k(context)
value = self.to_v(context)
if value is not None:
value = self.to_v(value)
else:
value = self.to_v(context)
del context, x
query = query.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)
@@ -256,13 +260,17 @@ class CrossAttentionDoggettx(nn.Module):
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
k_in = self.to_k(context)
v_in = self.to_v(context)
if value is not None:
v_in = self.to_v(value)
del value
else:
v_in = self.to_v(context)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
@@ -350,13 +358,17 @@ class CrossAttention(nn.Module):
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
@@ -402,11 +414,15 @@ class MemoryEfficientCrossAttention(nn.Module):
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
@@ -447,19 +463,19 @@ class CrossAttentionPytorch(nn.Module):
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
lambda t: t.view(b, -1, self.heads, self.dim_head).transpose(1, 2),
(q, k, v),
)
@@ -468,10 +484,7 @@ class CrossAttentionPytorch(nn.Module):
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
out.transpose(1, 2).reshape(b, -1, self.heads * self.dim_head)
)
return self.to_out(out)
@@ -519,11 +532,25 @@ class BasicTransformerBlock(nn.Module):
transformer_patches = {}
n = self.norm1(x)
if self.disable_self_attn:
context_attn1 = context
else:
context_attn1 = None
value_attn1 = None
if "attn1_patch" in transformer_patches:
patch = transformer_patches["attn1_patch"]
if context_attn1 is None:
context_attn1 = n
value_attn1 = context_attn1
for p in patch:
n, context_attn1, value_attn1 = p(current_index, n, context_attn1, value_attn1)
if "tomesd" in transformer_options:
m, u = tomesd.get_functions(x, transformer_options["tomesd"]["ratio"], transformer_options["original_shape"])
n = u(self.attn1(m(n), context=context if self.disable_self_attn else None))
n = u(self.attn1(m(n), context=context_attn1, value=value_attn1))
else:
n = self.attn1(n, context=context if self.disable_self_attn else None)
n = self.attn1(n, context=context_attn1, value=value_attn1)
x += n
if "middle_patch" in transformer_patches:
@@ -532,7 +559,16 @@ class BasicTransformerBlock(nn.Module):
x = p(current_index, x)
n = self.norm2(x)
n = self.attn2(n, context=context)
context_attn2 = context
value_attn2 = None
if "attn2_patch" in transformer_patches:
patch = transformer_patches["attn2_patch"]
value_attn2 = context_attn2
for p in patch:
n, context_attn2, value_attn2 = p(current_index, n, context_attn2, value_attn2)
n = self.attn2(n, context=context_attn2, value=value_attn2)
x += n
x = self.ff(self.norm3(x)) + x

View File

@@ -133,6 +133,7 @@ def unload_model():
#never unload models from GPU on high vram
if vram_state != VRAMState.HIGH_VRAM:
current_loaded_model.model.cpu()
current_loaded_model.model_patches_to("cpu")
current_loaded_model.unpatch_model()
current_loaded_model = None
@@ -156,6 +157,8 @@ def load_model_gpu(model):
except Exception as e:
model.unpatch_model()
raise e
model.model_patches_to(get_torch_device())
current_loaded_model = model
if vram_state == VRAMState.CPU:
pass

View File

@@ -197,7 +197,15 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
transformer_options = model_options['transformer_options'].copy()
if patches is not None:
transformer_options["patches"] = patches
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
else:
transformer_options["patches"] = patches
c['transformer_options'] = transformer_options

View File

@@ -254,6 +254,29 @@ class ModelPatcher:
def set_model_sampler_cfg_function(self, sampler_cfg_function):
self.model_options["sampler_cfg_function"] = sampler_cfg_function
def set_model_patch(self, patch, name):
to = self.model_options["transformer_options"]
if "patches" not in to:
to["patches"] = {}
to["patches"][name] = to["patches"].get(name, []) + [patch]
def set_model_attn1_patch(self, patch):
self.set_model_patch(patch, "attn1_patch")
def set_model_attn2_patch(self, patch):
self.set_model_patch(patch, "attn2_patch")
def model_patches_to(self, device):
to = self.model_options["transformer_options"]
if "patches" in to:
patches = to["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"):
patch_list[i] = patch_list[i].to(device)
def model_dtype(self):
return self.model.diffusion_model.dtype

View File

@@ -1,11 +1,14 @@
import torch
def load_torch_file(ckpt):
def load_torch_file(ckpt, safe_load=False):
if ckpt.lower().endswith(".safetensors"):
import safetensors.torch
sd = safetensors.torch.load_file(ckpt, device="cpu")
else:
pl_sd = torch.load(ckpt, map_location="cpu")
if safe_load:
pl_sd = torch.load(ckpt, map_location="cpu", weights_only=True)
else:
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd: