Fix small performance regression with fp8 fast and scaled fp8. (#10537)
This commit is contained in:
@@ -357,9 +357,10 @@ class TensorCoreFP8Layout(QuantizedLayout):
|
||||
scale = torch.tensor(scale)
|
||||
scale = scale.to(device=tensor.device, dtype=torch.float32)
|
||||
|
||||
lp_amax = torch.finfo(dtype).max
|
||||
tensor_scaled = tensor * (1.0 / scale).to(tensor.dtype)
|
||||
torch.clamp(tensor_scaled, min=-lp_amax, max=lp_amax, out=tensor_scaled)
|
||||
# TODO: uncomment this if it's actually needed because the clamp has a small performance penality'
|
||||
# lp_amax = torch.finfo(dtype).max
|
||||
# torch.clamp(tensor_scaled, min=-lp_amax, max=lp_amax, out=tensor_scaled)
|
||||
qdata = tensor_scaled.to(dtype, memory_format=torch.contiguous_format)
|
||||
|
||||
layout_params = {
|
||||
|
||||
Reference in New Issue
Block a user