HunyuanVideo 1.5 (#10819)
* init * update * Update model.py * Update model.py * remove print * Fix text encoding * Prevent empty negative prompt Really doesn't work otherwise * fp16 works * I2V * Update model_base.py * Update nodes_hunyuan.py * Better latent rgb factors * Use the correct sigclip output... * Support HunyuanVideo1.5 SR model * whitespaces... * Proper latent channel count * SR model fixes This also still needs timesteps scheduling based on the noise scale, can be used with two samplers too already * vae_refiner: roll the convolution through temporal Work in progress. Roll the convolution through time using 2-latent-frame chunks and a FIFO queue for the convolution seams. * Support HunyuanVideo15 latent resampler * fix * Some cleanup Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> * Proper hyvid15 I2V channels Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> * Fix TokenRefiner for fp16 Otherwise x.sum has infs, just in case only casting if input is fp16, I don't know if necessary. * Bugfix for the HunyuanVideo15 SR model * vae_refiner: roll the convolution through temporal II Roll the convolution through time using 2-latent-frame chunks and a FIFO queue for the convolution seams. Added support for encoder, lowered to 1 latent frame to save more VRAM, made work for Hunyuan Image 3.0 (as code shared). Fixed names, cleaned up code. * Allow any number of input frames in VAE. * Better VAE encode mem estimation. * Lowvram fix. * Fix hunyuan image 2.1 refiner. * Fix mistake. * Name changes. * Rename. * Whitespace. * Fix. * Fix. --------- Co-authored-by: kijai <40791699+kijai@users.noreply.github.com> Co-authored-by: Rattus <rattus128@gmail.com>
This commit is contained in:
@@ -4,7 +4,8 @@ import torch
|
||||
import comfy.model_management
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
from comfy.ldm.hunyuan_video.upsampler import HunyuanVideo15SRModel
|
||||
import folder_paths
|
||||
|
||||
class CLIPTextEncodeHunyuanDiT(io.ComfyNode):
|
||||
@classmethod
|
||||
@@ -57,6 +58,199 @@ class EmptyHunyuanLatentVideo(io.ComfyNode):
|
||||
generate = execute # TODO: remove
|
||||
|
||||
|
||||
class EmptyHunyuanVideo15Latent(EmptyHunyuanLatentVideo):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
schema = super().define_schema()
|
||||
schema.node_id = "EmptyHunyuanVideo15Latent"
|
||||
return schema
|
||||
|
||||
@classmethod
|
||||
def execute(cls, width, height, length, batch_size=1) -> io.NodeOutput:
|
||||
# Using scale factor of 16 instead of 8
|
||||
latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device())
|
||||
return io.NodeOutput({"samples": latent})
|
||||
|
||||
generate = execute # TODO: remove
|
||||
|
||||
|
||||
class HunyuanVideo15ImageToVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="HunyuanVideo15ImageToVideo",
|
||||
category="conditioning/video_models",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Conditioning.Input("negative"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("length", default=33, min=1, max=nodes.MAX_RESOLUTION, step=4),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
io.Image.Input("start_image", optional=True),
|
||||
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative"),
|
||||
io.Latent.Output(display_name="latent"),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None) -> io.NodeOutput:
|
||||
latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device())
|
||||
|
||||
if start_image is not None:
|
||||
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
|
||||
encoded = vae.encode(start_image[:, :, :, :3])
|
||||
concat_latent_image = torch.zeros((latent.shape[0], 32, latent.shape[2], latent.shape[3], latent.shape[4]), device=comfy.model_management.intermediate_device())
|
||||
concat_latent_image[:, :, :encoded.shape[2], :, :] = encoded
|
||||
|
||||
mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype)
|
||||
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0
|
||||
|
||||
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
|
||||
|
||||
if clip_vision_output is not None:
|
||||
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
|
||||
|
||||
out_latent = {}
|
||||
out_latent["samples"] = latent
|
||||
return io.NodeOutput(positive, negative, out_latent)
|
||||
|
||||
|
||||
class HunyuanVideo15SuperResolution(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="HunyuanVideo15SuperResolution",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Conditioning.Input("negative"),
|
||||
io.Vae.Input("vae", optional=True),
|
||||
io.Image.Input("start_image", optional=True),
|
||||
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
|
||||
io.Latent.Input("latent"),
|
||||
io.Float.Input("noise_augmentation", default=0.70, min=0.0, max=1.0, step=0.01),
|
||||
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative"),
|
||||
io.Latent.Output(display_name="latent"),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, positive, negative, latent, noise_augmentation, vae=None, start_image=None, clip_vision_output=None) -> io.NodeOutput:
|
||||
in_latent = latent["samples"]
|
||||
in_channels = in_latent.shape[1]
|
||||
cond_latent = torch.zeros([in_latent.shape[0], in_channels * 2 + 2, in_latent.shape[-3], in_latent.shape[-2], in_latent.shape[-1]], device=comfy.model_management.intermediate_device())
|
||||
cond_latent[:, in_channels + 1 : 2 * in_channels + 1] = in_latent
|
||||
cond_latent[:, 2 * in_channels + 1] = 1
|
||||
if start_image is not None:
|
||||
start_image = comfy.utils.common_upscale(start_image.movedim(-1, 1), in_latent.shape[-1] * 16, in_latent.shape[-2] * 16, "bilinear", "center").movedim(1, -1)
|
||||
encoded = vae.encode(start_image[:, :, :, :3])
|
||||
cond_latent[:, :in_channels, :encoded.shape[2], :, :] = encoded
|
||||
cond_latent[:, in_channels + 1, 0] = 1
|
||||
|
||||
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": cond_latent, "noise_augmentation": noise_augmentation})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": cond_latent, "noise_augmentation": noise_augmentation})
|
||||
if clip_vision_output is not None:
|
||||
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
|
||||
|
||||
return io.NodeOutput(positive, negative, latent)
|
||||
|
||||
|
||||
class LatentUpscaleModelLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentUpscaleModelLoader",
|
||||
display_name="Load Latent Upscale Model",
|
||||
category="loaders",
|
||||
inputs=[
|
||||
io.Combo.Input("model_name", options=folder_paths.get_filename_list("latent_upscale_models")),
|
||||
],
|
||||
outputs=[
|
||||
io.LatentUpscaleModel.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model_name) -> io.NodeOutput:
|
||||
model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name)
|
||||
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
|
||||
|
||||
if "blocks.0.block.0.conv.weight" in sd:
|
||||
config = {
|
||||
"in_channels": sd["in_conv.conv.weight"].shape[1],
|
||||
"out_channels": sd["out_conv.conv.weight"].shape[0],
|
||||
"hidden_channels": sd["in_conv.conv.weight"].shape[0],
|
||||
"num_blocks": len([k for k in sd.keys() if k.startswith("blocks.") and k.endswith(".block.0.conv.weight")]),
|
||||
"global_residual": False,
|
||||
}
|
||||
model_type = "720p"
|
||||
elif "up.0.block.0.conv1.conv.weight" in sd:
|
||||
sd = {key.replace("nin_shortcut", "nin_shortcut.conv", 1): value for key, value in sd.items()}
|
||||
config = {
|
||||
"z_channels": sd["conv_in.conv.weight"].shape[1],
|
||||
"out_channels": sd["conv_out.conv.weight"].shape[0],
|
||||
"block_out_channels": tuple(sd[f"up.{i}.block.0.conv1.conv.weight"].shape[0] for i in range(len([k for k in sd.keys() if k.startswith("up.") and k.endswith(".block.0.conv1.conv.weight")]))),
|
||||
}
|
||||
model_type = "1080p"
|
||||
|
||||
model = HunyuanVideo15SRModel(model_type, config)
|
||||
model.load_sd(sd)
|
||||
|
||||
return io.NodeOutput(model)
|
||||
|
||||
|
||||
class HunyuanVideo15LatentUpscaleWithModel(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="HunyuanVideo15LatentUpscaleWithModel",
|
||||
display_name="Hunyuan Video 15 Latent Upscale With Model",
|
||||
category="latent",
|
||||
inputs=[
|
||||
io.LatentUpscaleModel.Input("model"),
|
||||
io.Latent.Input("samples"),
|
||||
io.Combo.Input("upscale_method", options=["nearest-exact", "bilinear", "area", "bicubic", "bislerp"], default="bilinear"),
|
||||
io.Int.Input("width", default=1280, min=0, max=16384, step=8),
|
||||
io.Int.Input("height", default=720, min=0, max=16384, step=8),
|
||||
io.Combo.Input("crop", options=["disabled", "center"]),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, samples, upscale_method, width, height, crop) -> io.NodeOutput:
|
||||
if width == 0 and height == 0:
|
||||
return io.NodeOutput(samples)
|
||||
else:
|
||||
if width == 0:
|
||||
height = max(64, height)
|
||||
width = max(64, round(samples["samples"].shape[-1] * height / samples["samples"].shape[-2]))
|
||||
elif height == 0:
|
||||
width = max(64, width)
|
||||
height = max(64, round(samples["samples"].shape[-2] * width / samples["samples"].shape[-1]))
|
||||
else:
|
||||
width = max(64, width)
|
||||
height = max(64, height)
|
||||
s = comfy.utils.common_upscale(samples["samples"], width // 16, height // 16, upscale_method, crop)
|
||||
s = model.resample_latent(s)
|
||||
return io.NodeOutput({"samples": s.cpu().float()})
|
||||
|
||||
|
||||
PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = (
|
||||
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: "
|
||||
"1. The main content and theme of the video."
|
||||
@@ -210,6 +404,11 @@ class HunyuanExtension(ComfyExtension):
|
||||
CLIPTextEncodeHunyuanDiT,
|
||||
TextEncodeHunyuanVideo_ImageToVideo,
|
||||
EmptyHunyuanLatentVideo,
|
||||
EmptyHunyuanVideo15Latent,
|
||||
HunyuanVideo15ImageToVideo,
|
||||
HunyuanVideo15SuperResolution,
|
||||
HunyuanVideo15LatentUpscaleWithModel,
|
||||
LatentUpscaleModelLoader,
|
||||
HunyuanImageToVideo,
|
||||
EmptyHunyuanImageLatent,
|
||||
HunyuanRefinerLatent,
|
||||
|
||||
Reference in New Issue
Block a user