Add support for Chroma Radiance (#9682)
* Initial Chroma Radiance support * Minor Chroma Radiance cleanups * Update Radiance nodes to ensure latents/images are on the intermediate device * Fix Chroma Radiance memory estimation. * Increase Chroma Radiance memory usage factor * Increase Chroma Radiance memory usage factor once again * Ensure images are multiples of 16 for Chroma Radiance Add batch dimension and fix channels when necessary in ChromaRadianceImageToLatent node * Tile Chroma Radiance NeRF to reduce memory consumption, update memory usage factor * Update Radiance to support conv nerf final head type. * Allow setting NeRF embedder dtype for Radiance Bump Radiance nerf tile size to 32 Support EasyCache/LazyCache on Radiance (maybe) * Add ChromaRadianceStubVAE node * Crop Radiance image inputs to multiples of 16 instead of erroring to be in line with existing VAE behavior * Convert Chroma Radiance nodes to V3 schema. * Add ChromaRadianceOptions node and backend support. Cleanups/refactoring to reduce code duplication with Chroma. * Fix overriding the NeRF embedder dtype for Chroma Radiance * Minor Chroma Radiance cleanups * Move Chroma Radiance to its own directory in ldm Minor code cleanups and tooltip improvements * Fix Chroma Radiance embedder dtype overriding * Remove Radiance dynamic nerf_embedder dtype override feature * Unbork Radiance NeRF embedder init * Remove Chroma Radiance image conversion and stub VAE nodes Add a chroma_radiance option to the VAELoader builtin node which uses comfy.sd.PixelspaceConversionVAE Add a PixelspaceConversionVAE to comfy.sd for converting BHWC 0..1 <-> BCHW -1..1
This commit is contained in:
@@ -174,7 +174,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["guidance_embed"] = len(guidance_keys) > 0
|
||||
return dit_config
|
||||
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and '{}img_in.weight'.format(key_prefix) in state_dict_keys: #Flux
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "flux"
|
||||
dit_config["in_channels"] = 16
|
||||
@@ -204,6 +204,18 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["out_dim"] = 3072
|
||||
dit_config["hidden_dim"] = 5120
|
||||
dit_config["n_layers"] = 5
|
||||
if f"{key_prefix}nerf_blocks.0.norm.scale" in state_dict_keys: #Chroma Radiance
|
||||
dit_config["image_model"] = "chroma_radiance"
|
||||
dit_config["in_channels"] = 3
|
||||
dit_config["out_channels"] = 3
|
||||
dit_config["patch_size"] = 16
|
||||
dit_config["nerf_hidden_size"] = 64
|
||||
dit_config["nerf_mlp_ratio"] = 4
|
||||
dit_config["nerf_depth"] = 4
|
||||
dit_config["nerf_max_freqs"] = 8
|
||||
dit_config["nerf_tile_size"] = 32
|
||||
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
|
||||
dit_config["nerf_embedder_dtype"] = torch.float32
|
||||
else:
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
return dit_config
|
||||
|
||||
Reference in New Issue
Block a user