Enable Runtime Selection of Attention Functions (#9639)
* Looking into a @wrap_attn decorator to look for 'optimized_attention_override' entry in transformer_options * Created logging code for this branch so that it can be used to track down all the code paths where transformer_options would need to be added * Fix memory usage issue with inspect * Made WAN attention receive transformer_options, test node added to wan to test out attention override later * Added **kwargs to all attention functions so transformer_options could potentially be passed through * Make sure wrap_attn doesn't make itself recurse infinitely, attempt to load SageAttention and FlashAttention if not enabled so that they can be marked as available or not, create registry for available attention * Turn off attention logging for now, make AttentionOverrideTestNode have a dropdown with available attention (this is a test node only) * Make flux work with optimized_attention_override * Add logs to verify optimized_attention_override is passed all the way into attention function * Make Qwen work with optimized_attention_override * Made hidream work with optimized_attention_override * Made wan patches_replace work with optimized_attention_override * Made SD3 work with optimized_attention_override * Made HunyuanVideo work with optimized_attention_override * Made Mochi work with optimized_attention_override * Made LTX work with optimized_attention_override * Made StableAudio work with optimized_attention_override * Made optimized_attention_override work with ACE Step * Made Hunyuan3D work with optimized_attention_override * Make CosmosPredict2 work with optimized_attention_override * Made CosmosVideo work with optimized_attention_override * Made Omnigen 2 work with optimized_attention_override * Made StableCascade work with optimized_attention_override * Made AuraFlow work with optimized_attention_override * Made Lumina work with optimized_attention_override * Made Chroma work with optimized_attention_override * Made SVD work with optimized_attention_override * Fix WanI2VCrossAttention so that it expects to receive transformer_options * Fixed Wan2.1 Fun Camera transformer_options passthrough * Fixed WAN 2.1 VACE transformer_options passthrough * Add optimized to get_attention_function * Disable attention logs for now * Remove attention logging code * Remove _register_core_attention_functions, as we wouldn't want someone to call that, just in case * Satisfy ruff * Remove AttentionOverrideTest node, that's something to cook up for later
This commit is contained in:
@@ -159,7 +159,7 @@ class DoubleStreamBlock(nn.Module):
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None):
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
|
||||
@@ -182,7 +182,7 @@ class DoubleStreamBlock(nn.Module):
|
||||
attn = attention(torch.cat((img_q, txt_q), dim=2),
|
||||
torch.cat((img_k, txt_k), dim=2),
|
||||
torch.cat((img_v, txt_v), dim=2),
|
||||
pe=pe, mask=attn_mask)
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
|
||||
else:
|
||||
@@ -190,7 +190,7 @@ class DoubleStreamBlock(nn.Module):
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
pe=pe, mask=attn_mask)
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
|
||||
@@ -244,7 +244,7 @@ class SingleStreamBlock(nn.Module):
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor:
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
@@ -252,7 +252,7 @@ class SingleStreamBlock(nn.Module):
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask)
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += apply_mod(output, mod.gate, None, modulation_dims)
|
||||
|
||||
Reference in New Issue
Block a user