Enable Runtime Selection of Attention Functions (#9639)
* Looking into a @wrap_attn decorator to look for 'optimized_attention_override' entry in transformer_options * Created logging code for this branch so that it can be used to track down all the code paths where transformer_options would need to be added * Fix memory usage issue with inspect * Made WAN attention receive transformer_options, test node added to wan to test out attention override later * Added **kwargs to all attention functions so transformer_options could potentially be passed through * Make sure wrap_attn doesn't make itself recurse infinitely, attempt to load SageAttention and FlashAttention if not enabled so that they can be marked as available or not, create registry for available attention * Turn off attention logging for now, make AttentionOverrideTestNode have a dropdown with available attention (this is a test node only) * Make flux work with optimized_attention_override * Add logs to verify optimized_attention_override is passed all the way into attention function * Make Qwen work with optimized_attention_override * Made hidream work with optimized_attention_override * Made wan patches_replace work with optimized_attention_override * Made SD3 work with optimized_attention_override * Made HunyuanVideo work with optimized_attention_override * Made Mochi work with optimized_attention_override * Made LTX work with optimized_attention_override * Made StableAudio work with optimized_attention_override * Made optimized_attention_override work with ACE Step * Made Hunyuan3D work with optimized_attention_override * Make CosmosPredict2 work with optimized_attention_override * Made CosmosVideo work with optimized_attention_override * Made Omnigen 2 work with optimized_attention_override * Made StableCascade work with optimized_attention_override * Made AuraFlow work with optimized_attention_override * Made Lumina work with optimized_attention_override * Made Chroma work with optimized_attention_override * Made SVD work with optimized_attention_override * Fix WanI2VCrossAttention so that it expects to receive transformer_options * Fixed Wan2.1 Fun Camera transformer_options passthrough * Fixed WAN 2.1 VACE transformer_options passthrough * Add optimized to get_attention_function * Disable attention logs for now * Remove attention logging code * Remove _register_core_attention_functions, as we wouldn't want someone to call that, just in case * Satisfy ruff * Remove AttentionOverrideTest node, that's something to cook up for later
This commit is contained in:
@@ -132,6 +132,7 @@ class Attention(nn.Module):
|
||||
encoder_hidden_states_mask: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
transformer_options={},
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
seq_txt = encoder_hidden_states.shape[1]
|
||||
|
||||
@@ -159,7 +160,7 @@ class Attention(nn.Module):
|
||||
joint_key = joint_key.flatten(start_dim=2)
|
||||
joint_value = joint_value.flatten(start_dim=2)
|
||||
|
||||
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask)
|
||||
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options)
|
||||
|
||||
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
|
||||
img_attn_output = joint_hidden_states[:, seq_txt:, :]
|
||||
@@ -226,6 +227,7 @@ class QwenImageTransformerBlock(nn.Module):
|
||||
encoder_hidden_states_mask: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
transformer_options={},
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
img_mod_params = self.img_mod(temb)
|
||||
txt_mod_params = self.txt_mod(temb)
|
||||
@@ -242,6 +244,7 @@ class QwenImageTransformerBlock(nn.Module):
|
||||
encoder_hidden_states=txt_modulated,
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states + img_gate1 * img_attn_output
|
||||
@@ -434,9 +437,9 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"])
|
||||
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
hidden_states = out["img"]
|
||||
encoder_hidden_states = out["txt"]
|
||||
else:
|
||||
@@ -446,11 +449,12 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
if "double_block" in patches:
|
||||
for p in patches["double_block"]:
|
||||
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i})
|
||||
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i, "transformer_options": transformer_options})
|
||||
hidden_states = out["img"]
|
||||
encoder_hidden_states = out["txt"]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user