Enable Runtime Selection of Attention Functions (#9639)

* Looking into a @wrap_attn decorator to look for 'optimized_attention_override' entry in transformer_options

* Created logging code for this branch so that it can be used to track down all the code paths where transformer_options would need to be added

* Fix memory usage issue with inspect

* Made WAN attention receive transformer_options, test node added to wan to test out attention override later

* Added **kwargs to all attention functions so transformer_options could potentially be passed through

* Make sure wrap_attn doesn't make itself recurse infinitely, attempt to load SageAttention and FlashAttention if not enabled so that they can be marked as available or not, create registry for available attention

* Turn off attention logging for now, make AttentionOverrideTestNode have a dropdown with available attention (this is a test node only)

* Make flux work with optimized_attention_override

* Add logs to verify optimized_attention_override is passed all the way into attention function

* Make Qwen work with optimized_attention_override

* Made hidream work with optimized_attention_override

* Made wan patches_replace work with optimized_attention_override

* Made SD3 work with optimized_attention_override

* Made HunyuanVideo work with optimized_attention_override

* Made Mochi work with optimized_attention_override

* Made LTX work with optimized_attention_override

* Made StableAudio work with optimized_attention_override

* Made optimized_attention_override work with ACE Step

* Made Hunyuan3D work with optimized_attention_override

* Make CosmosPredict2 work with optimized_attention_override

* Made CosmosVideo work with optimized_attention_override

* Made Omnigen 2 work with optimized_attention_override

* Made StableCascade work with optimized_attention_override

* Made AuraFlow work with optimized_attention_override

* Made Lumina work with optimized_attention_override

* Made Chroma work with optimized_attention_override

* Made SVD work with optimized_attention_override

* Fix WanI2VCrossAttention so that it expects to receive transformer_options

* Fixed Wan2.1 Fun Camera transformer_options passthrough

* Fixed WAN 2.1 VACE transformer_options passthrough

* Add optimized to get_attention_function

* Disable attention logs for now

* Remove attention logging code

* Remove _register_core_attention_functions, as we wouldn't want someone to call that, just in case

* Satisfy ruff

* Remove AttentionOverrideTest node, that's something to cook up for later
This commit is contained in:
Jedrzej Kosinski
2025-09-12 15:07:38 -07:00
committed by GitHub
parent b149e2e1e3
commit d7f40442f9
26 changed files with 316 additions and 179 deletions

View File

@@ -52,7 +52,7 @@ class WanSelfAttention(nn.Module):
self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, freqs):
def forward(self, x, freqs, transformer_options={}):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
@@ -75,6 +75,7 @@ class WanSelfAttention(nn.Module):
k.view(b, s, n * d),
v,
heads=self.num_heads,
transformer_options=transformer_options,
)
x = self.o(x)
@@ -83,7 +84,7 @@ class WanSelfAttention(nn.Module):
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context, **kwargs):
def forward(self, x, context, transformer_options={}, **kwargs):
r"""
Args:
x(Tensor): Shape [B, L1, C]
@@ -95,7 +96,7 @@ class WanT2VCrossAttention(WanSelfAttention):
v = self.v(context)
# compute attention
x = optimized_attention(q, k, v, heads=self.num_heads)
x = optimized_attention(q, k, v, heads=self.num_heads, transformer_options=transformer_options)
x = self.o(x)
return x
@@ -116,7 +117,7 @@ class WanI2VCrossAttention(WanSelfAttention):
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, context, context_img_len):
def forward(self, x, context, context_img_len, transformer_options={}):
r"""
Args:
x(Tensor): Shape [B, L1, C]
@@ -131,9 +132,9 @@ class WanI2VCrossAttention(WanSelfAttention):
v = self.v(context)
k_img = self.norm_k_img(self.k_img(context_img))
v_img = self.v_img(context_img)
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads)
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads, transformer_options=transformer_options)
# compute attention
x = optimized_attention(q, k, v, heads=self.num_heads)
x = optimized_attention(q, k, v, heads=self.num_heads, transformer_options=transformer_options)
# output
x = x + img_x
@@ -206,6 +207,7 @@ class WanAttentionBlock(nn.Module):
freqs,
context,
context_img_len=257,
transformer_options={},
):
r"""
Args:
@@ -224,12 +226,12 @@ class WanAttentionBlock(nn.Module):
# self-attention
y = self.self_attn(
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
freqs)
freqs, transformer_options=transformer_options)
x = torch.addcmul(x, y, repeat_e(e[2], x))
# cross-attention & ffn
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len)
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len, transformer_options=transformer_options)
y = self.ffn(torch.addcmul(repeat_e(e[3], x), self.norm2(x), 1 + repeat_e(e[4], x)))
x = torch.addcmul(x, y, repeat_e(e[5], x))
return x
@@ -559,12 +561,12 @@ class WanModel(torch.nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
# head
x = self.head(x, e)
@@ -742,17 +744,17 @@ class VaceWanModel(WanModel):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
ii = self.vace_layers_mapping.get(i, None)
if ii is not None:
for iii in range(len(c)):
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
x += c_skip * vace_strength[iii]
del c_skip
# head
@@ -841,12 +843,12 @@ class CameraWanModel(WanModel):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
# head
x = self.head(x, e)