Basic WIP support for the wan animate model. (#9939)
This commit is contained in:
@@ -1108,6 +1108,89 @@ class WanHuMoImageToVideo(io.ComfyNode):
|
||||
out_latent["samples"] = latent
|
||||
return io.NodeOutput(positive, negative, out_latent)
|
||||
|
||||
class WanAnimateToVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="WanAnimateToVideo",
|
||||
category="conditioning/video_models",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Conditioning.Input("negative"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("length", default=77, min=1, max=nodes.MAX_RESOLUTION, step=4),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
|
||||
io.Image.Input("reference_image", optional=True),
|
||||
io.Image.Input("face_video", optional=True),
|
||||
io.Image.Input("pose_video", optional=True),
|
||||
io.Int.Input("continue_motion_max_frames", default=5, min=1, max=nodes.MAX_RESOLUTION, step=4),
|
||||
io.Image.Input("continue_motion", optional=True),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative"),
|
||||
io.Latent.Output(display_name="latent"),
|
||||
io.Int.Output(display_name="trim_latent"),
|
||||
],
|
||||
is_experimental=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, positive, negative, vae, width, height, length, batch_size, continue_motion_max_frames, reference_image=None, clip_vision_output=None, face_video=None, pose_video=None, continue_motion=None) -> io.NodeOutput:
|
||||
latent_length = ((length - 1) // 4) + 1
|
||||
latent_width = width // 8
|
||||
latent_height = height // 8
|
||||
trim_latent = 0
|
||||
|
||||
if reference_image is None:
|
||||
reference_image = torch.zeros((1, height, width, 3))
|
||||
|
||||
image = comfy.utils.common_upscale(reference_image[:length].movedim(-1, 1), width, height, "area", "center").movedim(1, -1)
|
||||
concat_latent_image = vae.encode(image[:, :, :, :3])
|
||||
mask = torch.zeros((1, 1, concat_latent_image.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=concat_latent_image.device, dtype=concat_latent_image.dtype)
|
||||
trim_latent += concat_latent_image.shape[2]
|
||||
|
||||
if clip_vision_output is not None:
|
||||
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
|
||||
|
||||
if face_video is not None:
|
||||
face_video = comfy.utils.common_upscale(face_video[:length].movedim(-1, 1), 512, 512, "area", "center") * 2.0 - 1.0
|
||||
face_video = face_video.movedim(0, 1).unsqueeze(0)
|
||||
positive = node_helpers.conditioning_set_values(positive, {"face_video_pixels": face_video})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"face_video_pixels": face_video * 0.0 - 1.0})
|
||||
|
||||
if pose_video is not None:
|
||||
pose_video = comfy.utils.common_upscale(pose_video[:length].movedim(-1, 1), width, height, "area", "center").movedim(1, -1)
|
||||
pose_video_latent = vae.encode(pose_video[:, :, :, :3])
|
||||
positive = node_helpers.conditioning_set_values(positive, {"pose_video_latent": pose_video_latent})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"pose_video_latent": pose_video_latent})
|
||||
|
||||
if continue_motion is None:
|
||||
image = torch.ones((length, height, width, 3)) * 0.5
|
||||
else:
|
||||
continue_motion = continue_motion[-continue_motion_max_frames:]
|
||||
continue_motion = comfy.utils.common_upscale(continue_motion[-length:].movedim(-1, 1), width, height, "area", "center").movedim(1, -1)
|
||||
image = torch.ones((length, height, width, continue_motion.shape[-1]), device=continue_motion.device, dtype=continue_motion.dtype) * 0.5
|
||||
image[:continue_motion.shape[0]] = continue_motion
|
||||
|
||||
concat_latent_image = torch.cat((concat_latent_image, vae.encode(image[:, :, :, :3])), dim=2)
|
||||
mask_refmotion = torch.ones((1, 1, latent_length, concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=mask.device, dtype=mask.dtype)
|
||||
if continue_motion is not None:
|
||||
mask_refmotion[:, :, :((continue_motion.shape[0] - 1) // 4) + 1] = 0.0
|
||||
|
||||
mask = torch.cat((mask, mask_refmotion), dim=2)
|
||||
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
|
||||
|
||||
latent = torch.zeros([batch_size, 16, latent_length + trim_latent, latent_height, latent_width], device=comfy.model_management.intermediate_device())
|
||||
out_latent = {}
|
||||
out_latent["samples"] = latent
|
||||
return io.NodeOutput(positive, negative, out_latent, trim_latent)
|
||||
|
||||
class Wan22ImageToVideoLatent(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@@ -1169,6 +1252,7 @@ class WanExtension(ComfyExtension):
|
||||
WanSoundImageToVideo,
|
||||
WanSoundImageToVideoExtend,
|
||||
WanHuMoImageToVideo,
|
||||
WanAnimateToVideo,
|
||||
Wan22ImageToVideoLatent,
|
||||
]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user