Clean up and Documentation (#347) [skip ci]
* cmd,misc: move misc binaries to cmd/ * docs: add docs and move examples/ there * misc: remove unused misc/assets dir * docs: add configuration.md * update README with better structure Updates: #334
This commit is contained in:
6
docs/examples/README.md
Normal file
6
docs/examples/README.md
Normal file
@@ -0,0 +1,6 @@
|
||||
# Example Configs and Use Cases
|
||||
|
||||
A collections of usecases and examples for getting the most out of llama-swap.
|
||||
|
||||
* [Speculative Decoding](speculative-decoding/README.md) - using a small draft model can increase inference speeds from 20% to 40%. This example includes a configurations Qwen2.5-Coder-32B (2.5x increase) and Llama-3.1-70B (1.4x increase) in the best cases.
|
||||
* [Optimizing Code Generation](benchmark-snakegame/README.md) - find the optimal settings for your machine. This example demonstrates defining multiple configurations and testing which one is fastest.
|
||||
153
docs/examples/aider-qwq-coder/README.md
Normal file
153
docs/examples/aider-qwq-coder/README.md
Normal file
@@ -0,0 +1,153 @@
|
||||
# aider, QwQ, Qwen-Coder 2.5 and llama-swap
|
||||
|
||||
This guide show how to use aider and llama-swap to get a 100% local coding co-pilot setup. The focus is on the trickest part which is configuring aider, llama-swap and llama-server to work together.
|
||||
|
||||
## Here's what you you need:
|
||||
|
||||
- aider - [installation docs](https://aider.chat/docs/install.html)
|
||||
- llama-server - [download latest release](https://github.com/ggml-org/llama.cpp/releases)
|
||||
- llama-swap - [download latest release](https://github.com/mostlygeek/llama-swap/releases)
|
||||
- [QwQ 32B](https://huggingface.co/bartowski/Qwen_QwQ-32B-GGUF) and [Qwen Coder 2.5 32B](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF) models
|
||||
- 24GB VRAM video card
|
||||
|
||||
## Running aider
|
||||
|
||||
The goal is getting this command line to work:
|
||||
|
||||
```sh
|
||||
aider --architect \
|
||||
--no-show-model-warnings \
|
||||
--model openai/QwQ \
|
||||
--editor-model openai/qwen-coder-32B \
|
||||
--model-settings-file aider.model.settings.yml \
|
||||
--openai-api-key "sk-na" \
|
||||
--openai-api-base "http://10.0.1.24:8080/v1" \
|
||||
```
|
||||
|
||||
Set `--openai-api-base` to the IP and port where your llama-swap is running.
|
||||
|
||||
## Create an aider model settings file
|
||||
|
||||
```yaml
|
||||
# aider.model.settings.yml
|
||||
|
||||
#
|
||||
# !!! important: model names must match llama-swap configuration names !!!
|
||||
#
|
||||
|
||||
- name: "openai/QwQ"
|
||||
edit_format: diff
|
||||
extra_params:
|
||||
max_tokens: 16384
|
||||
top_p: 0.95
|
||||
top_k: 40
|
||||
presence_penalty: 0.1
|
||||
repetition_penalty: 1
|
||||
num_ctx: 16384
|
||||
use_temperature: 0.6
|
||||
reasoning_tag: think
|
||||
weak_model_name: "openai/qwen-coder-32B"
|
||||
editor_model_name: "openai/qwen-coder-32B"
|
||||
|
||||
- name: "openai/qwen-coder-32B"
|
||||
edit_format: diff
|
||||
extra_params:
|
||||
max_tokens: 16384
|
||||
top_p: 0.8
|
||||
top_k: 20
|
||||
repetition_penalty: 1.05
|
||||
use_temperature: 0.6
|
||||
reasoning_tag: think
|
||||
editor_edit_format: editor-diff
|
||||
editor_model_name: "openai/qwen-coder-32B"
|
||||
```
|
||||
|
||||
## llama-swap configuration
|
||||
|
||||
```yaml
|
||||
# config.yaml
|
||||
|
||||
# The parameters are tweaked to fit model+context into 24GB VRAM GPUs
|
||||
models:
|
||||
"qwen-coder-32B":
|
||||
proxy: "http://127.0.0.1:8999"
|
||||
cmd: >
|
||||
/path/to/llama-server
|
||||
--host 127.0.0.1 --port 8999 --flash-attn --slots
|
||||
--ctx-size 16000
|
||||
--cache-type-k q8_0 --cache-type-v q8_0
|
||||
-ngl 99
|
||||
--model /path/to/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
|
||||
|
||||
"QwQ":
|
||||
proxy: "http://127.0.0.1:9503"
|
||||
cmd: >
|
||||
/path/to/llama-server
|
||||
--host 127.0.0.1 --port 9503 --flash-attn --metrics--slots
|
||||
--cache-type-k q8_0 --cache-type-v q8_0
|
||||
--ctx-size 32000
|
||||
--samplers "top_k;top_p;min_p;temperature;dry;typ_p;xtc"
|
||||
--temp 0.6 --repeat-penalty 1.1 --dry-multiplier 0.5
|
||||
--min-p 0.01 --top-k 40 --top-p 0.95
|
||||
-ngl 99
|
||||
--model /mnt/nvme/models/bartowski/Qwen_QwQ-32B-Q4_K_M.gguf
|
||||
```
|
||||
|
||||
## Advanced, Dual GPU Configuration
|
||||
|
||||
If you have _dual 24GB GPUs_ you can use llama-swap profiles to avoid swapping between QwQ and Qwen Coder.
|
||||
|
||||
In llama-swap's configuration file:
|
||||
|
||||
1. add a `profiles` section with `aider` as the profile name
|
||||
2. using the `env` field to specify the GPU IDs for each model
|
||||
|
||||
```yaml
|
||||
# config.yaml
|
||||
|
||||
# Add a profile for aider
|
||||
profiles:
|
||||
aider:
|
||||
- qwen-coder-32B
|
||||
- QwQ
|
||||
|
||||
models:
|
||||
"qwen-coder-32B":
|
||||
# manually set the GPU to run on
|
||||
env:
|
||||
- "CUDA_VISIBLE_DEVICES=0"
|
||||
proxy: "http://127.0.0.1:8999"
|
||||
cmd: /path/to/llama-server ...
|
||||
|
||||
"QwQ":
|
||||
# manually set the GPU to run on
|
||||
env:
|
||||
- "CUDA_VISIBLE_DEVICES=1"
|
||||
proxy: "http://127.0.0.1:9503"
|
||||
cmd: /path/to/llama-server ...
|
||||
```
|
||||
|
||||
Append the profile tag, `aider:`, to the model names in the model settings file
|
||||
|
||||
```yaml
|
||||
# aider.model.settings.yml
|
||||
- name: "openai/aider:QwQ"
|
||||
weak_model_name: "openai/aider:qwen-coder-32B-aider"
|
||||
editor_model_name: "openai/aider:qwen-coder-32B-aider"
|
||||
|
||||
- name: "openai/aider:qwen-coder-32B"
|
||||
editor_model_name: "openai/aider:qwen-coder-32B-aider"
|
||||
```
|
||||
|
||||
Run aider with:
|
||||
|
||||
```sh
|
||||
$ aider --architect \
|
||||
--no-show-model-warnings \
|
||||
--model openai/aider:QwQ \
|
||||
--editor-model openai/aider:qwen-coder-32B \
|
||||
--config aider.conf.yml \
|
||||
--model-settings-file aider.model.settings.yml
|
||||
--openai-api-key "sk-na" \
|
||||
--openai-api-base "http://10.0.1.24:8080/v1"
|
||||
```
|
||||
@@ -0,0 +1,28 @@
|
||||
# this makes use of llama-swap's profile feature to
|
||||
# keep the architect and editor models in VRAM on different GPUs
|
||||
|
||||
- name: "openai/aider:QwQ"
|
||||
edit_format: diff
|
||||
extra_params:
|
||||
max_tokens: 16384
|
||||
top_p: 0.95
|
||||
top_k: 40
|
||||
presence_penalty: 0.1
|
||||
repetition_penalty: 1
|
||||
num_ctx: 16384
|
||||
use_temperature: 0.6
|
||||
reasoning_tag: think
|
||||
weak_model_name: "openai/aider:qwen-coder-32B"
|
||||
editor_model_name: "openai/aider:qwen-coder-32B"
|
||||
|
||||
- name: "openai/aider:qwen-coder-32B"
|
||||
edit_format: diff
|
||||
extra_params:
|
||||
max_tokens: 16384
|
||||
top_p: 0.8
|
||||
top_k: 20
|
||||
repetition_penalty: 1.05
|
||||
use_temperature: 0.6
|
||||
reasoning_tag: think
|
||||
editor_edit_format: editor-diff
|
||||
editor_model_name: "openai/aider:qwen-coder-32B"
|
||||
26
docs/examples/aider-qwq-coder/aider.model.settings.yml
Normal file
26
docs/examples/aider-qwq-coder/aider.model.settings.yml
Normal file
@@ -0,0 +1,26 @@
|
||||
- name: "openai/QwQ"
|
||||
edit_format: diff
|
||||
extra_params:
|
||||
max_tokens: 16384
|
||||
top_p: 0.95
|
||||
top_k: 40
|
||||
presence_penalty: 0.1
|
||||
repetition_penalty: 1
|
||||
num_ctx: 16384
|
||||
use_temperature: 0.6
|
||||
reasoning_tag: think
|
||||
weak_model_name: "openai/qwen-coder-32B"
|
||||
editor_model_name: "openai/qwen-coder-32B"
|
||||
|
||||
- name: "openai/qwen-coder-32B"
|
||||
edit_format: diff
|
||||
extra_params:
|
||||
max_tokens: 16384
|
||||
top_p: 0.8
|
||||
top_k: 20
|
||||
repetition_penalty: 1.05
|
||||
use_temperature: 0.6
|
||||
reasoning_tag: think
|
||||
editor_edit_format: editor-diff
|
||||
editor_model_name: "openai/qwen-coder-32B"
|
||||
|
||||
49
docs/examples/aider-qwq-coder/llama-swap.yaml
Normal file
49
docs/examples/aider-qwq-coder/llama-swap.yaml
Normal file
@@ -0,0 +1,49 @@
|
||||
healthCheckTimeout: 300
|
||||
logLevel: debug
|
||||
|
||||
profiles:
|
||||
aider:
|
||||
- qwen-coder-32B
|
||||
- QwQ
|
||||
|
||||
models:
|
||||
"qwen-coder-32B":
|
||||
env:
|
||||
- "CUDA_VISIBLE_DEVICES=0"
|
||||
aliases:
|
||||
- coder
|
||||
proxy: "http://127.0.0.1:8999"
|
||||
|
||||
# set appropriate paths for your environment
|
||||
cmd: >
|
||||
/path/to/llama-server
|
||||
--host 127.0.0.1 --port 8999 --flash-attn --slots
|
||||
--ctx-size 16000
|
||||
--ctx-size-draft 16000
|
||||
--model /path/to/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
|
||||
--model-draft /path/to/Qwen2.5-Coder-1.5B-Instruct-Q8_0.gguf
|
||||
-ngl 99 -ngld 99
|
||||
--draft-max 16 --draft-min 4 --draft-p-min 0.4
|
||||
--cache-type-k q8_0 --cache-type-v q8_0
|
||||
"QwQ":
|
||||
env:
|
||||
- "CUDA_VISIBLE_DEVICES=1"
|
||||
proxy: "http://127.0.0.1:9503"
|
||||
|
||||
# set appropriate paths for your environment
|
||||
cmd: >
|
||||
/path/to/llama-server
|
||||
--host 127.0.0.1 --port 9503
|
||||
--flash-attn --metrics
|
||||
--slots
|
||||
--model /path/to/Qwen_QwQ-32B-Q4_K_M.gguf
|
||||
--cache-type-k q8_0 --cache-type-v q8_0
|
||||
--ctx-size 32000
|
||||
--samplers "top_k;top_p;min_p;temperature;dry;typ_p;xtc"
|
||||
--temp 0.6
|
||||
--repeat-penalty 1.1
|
||||
--dry-multiplier 0.5
|
||||
--min-p 0.01
|
||||
--top-k 40
|
||||
--top-p 0.95
|
||||
-ngl 99 -ngld 99
|
||||
123
docs/examples/benchmark-snakegame/README.md
Normal file
123
docs/examples/benchmark-snakegame/README.md
Normal file
@@ -0,0 +1,123 @@
|
||||
# Optimizing Code Generation with llama-swap
|
||||
|
||||
Finding the best mix of settings for your hardware can be time consuming. This example demonstrates using a custom configuration file to automate testing different scenarios to find the an optimal configuration.
|
||||
|
||||
The benchmark writes a snake game in Python, TypeScript, and Swift using the Qwen 2.5 Coder models. The experiments were done using a 3090 and a P40.
|
||||
|
||||
**Benchmark Scenarios**
|
||||
|
||||
Three scenarios are tested:
|
||||
|
||||
- 3090-only: Just the main model on the 3090
|
||||
- 3090-with-draft: the main and draft models on the 3090
|
||||
- 3090-P40-draft: the main model on the 3090 with the draft model offloaded to the P40
|
||||
|
||||
**Available Devices**
|
||||
|
||||
Use the following command to list available devices IDs for the configuration:
|
||||
|
||||
```
|
||||
$ /mnt/nvme/llama-server/llama-server-f3252055 --list-devices
|
||||
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
||||
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
|
||||
ggml_cuda_init: found 4 CUDA devices:
|
||||
Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
|
||||
Device 1: Tesla P40, compute capability 6.1, VMM: yes
|
||||
Device 2: Tesla P40, compute capability 6.1, VMM: yes
|
||||
Device 3: Tesla P40, compute capability 6.1, VMM: yes
|
||||
Available devices:
|
||||
CUDA0: NVIDIA GeForce RTX 3090 (24154 MiB, 406 MiB free)
|
||||
CUDA1: Tesla P40 (24438 MiB, 22942 MiB free)
|
||||
CUDA2: Tesla P40 (24438 MiB, 24144 MiB free)
|
||||
CUDA3: Tesla P40 (24438 MiB, 24144 MiB free)
|
||||
```
|
||||
|
||||
**Configuration**
|
||||
|
||||
The configuration file, `benchmark-config.yaml`, defines the three scenarios:
|
||||
|
||||
```yaml
|
||||
models:
|
||||
"3090-only":
|
||||
proxy: "http://127.0.0.1:9503"
|
||||
cmd: >
|
||||
/mnt/nvme/llama-server/llama-server-f3252055
|
||||
--host 127.0.0.1 --port 9503
|
||||
--flash-attn
|
||||
--slots
|
||||
|
||||
--model /mnt/nvme/models/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
|
||||
-ngl 99
|
||||
--device CUDA0
|
||||
|
||||
--ctx-size 32768
|
||||
--cache-type-k q8_0 --cache-type-v q8_0
|
||||
|
||||
"3090-with-draft":
|
||||
proxy: "http://127.0.0.1:9503"
|
||||
# --ctx-size 28500 max that can fit on 3090 after draft model
|
||||
cmd: >
|
||||
/mnt/nvme/llama-server/llama-server-f3252055
|
||||
--host 127.0.0.1 --port 9503
|
||||
--flash-attn
|
||||
--slots
|
||||
|
||||
--model /mnt/nvme/models/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
|
||||
-ngl 99
|
||||
--device CUDA0
|
||||
|
||||
--model-draft /mnt/nvme/models/Qwen2.5-Coder-0.5B-Instruct-Q8_0.gguf
|
||||
-ngld 99
|
||||
--draft-max 16
|
||||
--draft-min 4
|
||||
--draft-p-min 0.4
|
||||
--device-draft CUDA0
|
||||
|
||||
--ctx-size 28500
|
||||
--cache-type-k q8_0 --cache-type-v q8_0
|
||||
|
||||
"3090-P40-draft":
|
||||
proxy: "http://127.0.0.1:9503"
|
||||
cmd: >
|
||||
/mnt/nvme/llama-server/llama-server-f3252055
|
||||
--host 127.0.0.1 --port 9503
|
||||
--flash-attn --metrics
|
||||
--slots
|
||||
--model /mnt/nvme/models/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
|
||||
-ngl 99
|
||||
--device CUDA0
|
||||
|
||||
--model-draft /mnt/nvme/models/Qwen2.5-Coder-0.5B-Instruct-Q8_0.gguf
|
||||
-ngld 99
|
||||
--draft-max 16
|
||||
--draft-min 4
|
||||
--draft-p-min 0.4
|
||||
--device-draft CUDA1
|
||||
|
||||
--ctx-size 32768
|
||||
--cache-type-k q8_0 --cache-type-v q8_0
|
||||
```
|
||||
|
||||
> Note in the `3090-with-draft` scenario the `--ctx-size` had to be reduced from 32768 to to accommodate the draft model.
|
||||
|
||||
|
||||
**Running the Benchmark**
|
||||
|
||||
To run the benchmark, execute the following commands:
|
||||
|
||||
1. `llama-swap -config benchmark-config.yaml`
|
||||
1. `./run-benchmark.sh http://localhost:8080 "3090-only" "3090-with-draft" "3090-P40-draft"`
|
||||
|
||||
The [benchmark script](run-benchmark.sh) generates a CSV output of the results, which can be converted to a Markdown table for readability.
|
||||
|
||||
**Results (tokens/second)**
|
||||
|
||||
| model | python | typescript | swift |
|
||||
|-----------------|--------|------------|-------|
|
||||
| 3090-only | 34.03 | 34.01 | 34.01 |
|
||||
| 3090-with-draft | 106.65 | 70.48 | 57.89 |
|
||||
| 3090-P40-draft | 81.54 | 60.35 | 46.50 |
|
||||
|
||||
Many different factors, like the programming language, can have big impacts on the performance gains. However, with a custom configuration file for benchmarking it is easy to test the different variations to discover what's best for your hardware.
|
||||
|
||||
Happy coding!
|
||||
40
docs/examples/benchmark-snakegame/run-benchmark.sh
Executable file
40
docs/examples/benchmark-snakegame/run-benchmark.sh
Executable file
@@ -0,0 +1,40 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# This script generates a CSV file showing the token/second for generating a Snake Game in python, typescript and swift
|
||||
# It was created to test the effects of speculative decoding and the various draft settings on performance.
|
||||
#
|
||||
# Writing code with a low temperature seems to provide fairly consistent logic.
|
||||
#
|
||||
# Usage: ./benchmark.sh <url> <model1> [model2 ...]
|
||||
# Example: ./benchmark.sh http://localhost:8080 model1 model2
|
||||
|
||||
if [ "$#" -lt 2 ]; then
|
||||
echo "Usage: $0 <url> <model1> [model2 ...]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
url=$1; shift
|
||||
|
||||
echo "model,python,typescript,swift"
|
||||
|
||||
for model in "$@"; do
|
||||
|
||||
echo -n "$model,"
|
||||
|
||||
for lang in "python" "typescript" "swift"; do
|
||||
# expects a llama.cpp after PR https://github.com/ggerganov/llama.cpp/pull/10548
|
||||
# (Dec 3rd/2024)
|
||||
time=$(curl -s --url "$url/v1/chat/completions" -d "{\"messages\": [{\"role\": \"system\", \"content\": \"you only write code.\"}, {\"role\": \"user\", \"content\": \"write snake game in $lang\"}], \"top_k\": 1, \"timings_per_token\":true, \"model\":\"$model\"}" | jq -r .timings.predicted_per_second)
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
time="error"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ "$lang" != "swift" ]; then
|
||||
printf "%0.2f tps," $time
|
||||
else
|
||||
printf "%0.2f tps\n" $time
|
||||
fi
|
||||
done
|
||||
done
|
||||
51
docs/examples/restart-on-config-change/README.md
Normal file
51
docs/examples/restart-on-config-change/README.md
Normal file
@@ -0,0 +1,51 @@
|
||||
# Restart llama-swap on config change
|
||||
|
||||
Sometimes editing the configuration file can take a bit of trail and error to get a model configuration tuned just right. The `watch-and-restart.sh` script can be used to watch `config.yaml` for changes and restart `llama-swap` when it detects a change.
|
||||
|
||||
```bash
|
||||
#!/bin/bash
|
||||
#
|
||||
# A simple watch and restart llama-swap when its configuration
|
||||
# file changes. Useful for trying out configuration changes
|
||||
# without manually restarting the server each time.
|
||||
if [ -z "$1" ]; then
|
||||
echo "Usage: $0 <path to config.yaml>"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
while true; do
|
||||
# Start the process again
|
||||
./llama-swap-linux-amd64 -config $1 -listen :1867 &
|
||||
PID=$!
|
||||
echo "Started llama-swap with PID $PID"
|
||||
|
||||
# Wait for modifications in the specified directory or file
|
||||
inotifywait -e modify "$1"
|
||||
|
||||
# Check if process exists before sending signal
|
||||
if kill -0 $PID 2>/dev/null; then
|
||||
echo "Sending SIGTERM to $PID"
|
||||
kill -SIGTERM $PID
|
||||
wait $PID
|
||||
else
|
||||
echo "Process $PID no longer exists"
|
||||
fi
|
||||
sleep 1
|
||||
done
|
||||
```
|
||||
|
||||
## Usage and output example
|
||||
|
||||
```bash
|
||||
$ ./watch-and-restart.sh config.yaml
|
||||
Started llama-swap with PID 495455
|
||||
Setting up watches.
|
||||
Watches established.
|
||||
llama-swap listening on :1867
|
||||
Sending SIGTERM to 495455
|
||||
Shutting down llama-swap
|
||||
Started llama-swap with PID 495486
|
||||
Setting up watches.
|
||||
Watches established.
|
||||
llama-swap listening on :1867
|
||||
```
|
||||
124
docs/examples/speculative-decoding/README.md
Normal file
124
docs/examples/speculative-decoding/README.md
Normal file
@@ -0,0 +1,124 @@
|
||||
# Speculative Decoding
|
||||
|
||||
Speculative decoding can significantly improve the tokens per second. However, this comes at the cost of increased VRAM usage for the draft model. The examples provided are based on a server with three P40s and one 3090.
|
||||
|
||||
## Coding Use Case
|
||||
|
||||
This example uses Qwen2.5 Coder 32B with the 0.5B model as a draft. A quantization of Q8_0 was chosen for the draft model, as quantization has a greater impact on smaller models.
|
||||
|
||||
The models used are:
|
||||
|
||||
* [Bartowski Qwen2.5-Coder-32B-Instruct](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF)
|
||||
* [Bartowski Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/bartowski/Qwen2.5-Coder-0.5B-Instruct-GGUF)
|
||||
|
||||
The llama-swap configuration is as follows:
|
||||
|
||||
```yaml
|
||||
models:
|
||||
"qwen-coder-32b-q4":
|
||||
# main model on 3090, draft on P40 #1
|
||||
cmd: >
|
||||
/mnt/nvme/llama-server/llama-server-be0e35
|
||||
--host 127.0.0.1 --port 9503
|
||||
--flash-attn --metrics
|
||||
--slots
|
||||
--model /mnt/nvme/models/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
|
||||
-ngl 99
|
||||
--ctx-size 19000
|
||||
--model-draft /mnt/nvme/models/Qwen2.5-Coder-0.5B-Instruct-Q8_0.gguf
|
||||
-ngld 99
|
||||
--draft-max 16
|
||||
--draft-min 4
|
||||
--draft-p-min 0.4
|
||||
--device CUDA0
|
||||
--device-draft CUDA1
|
||||
proxy: "http://127.0.0.1:9503"
|
||||
```
|
||||
|
||||
In this configuration, two GPUs are used: a 3090 (CUDA0) for the main model and a P40 (CUDA1) for the draft model. Although both models can fit on the 3090, relocating the draft model to the P40 freed up space for a larger context size. Despite the P40 being about 1/3rd the speed of the 3090, the small model still improved tokens per second.
|
||||
|
||||
Multiple tests were run with various parameters, and the fastest result was chosen for the configuration. In all tests, the 0.5B model produced the largest improvements to tokens per second.
|
||||
|
||||
Baseline: 33.92 tokens/second on 3090 without a draft model.
|
||||
|
||||
| draft-max | draft-min | draft-p-min | python | TS | swift |
|
||||
|-----------|-----------|-------------|--------|----|-------|
|
||||
| 16 | 1 | 0.9 | 71.64 | 55.55 | 48.06 |
|
||||
| 16 | 1 | 0.4 | 83.21 | 58.55 | 45.50 |
|
||||
| 16 | 1 | 0.1 | 79.72 | 55.66 | 43.94 |
|
||||
| 16 | 2 | 0.9 | 68.47 | 55.13 | 43.12 |
|
||||
| 16 | 2 | 0.4 | 82.82 | 57.42 | 48.83 |
|
||||
| 16 | 2 | 0.1 | 81.68 | 51.37 | 45.72 |
|
||||
| 16 | 4 | 0.9 | 66.44 | 48.49 | 42.40 |
|
||||
| 16 | 4 | 0.4 | _83.62_ (fastest)| _58.29_ | _50.17_ |
|
||||
| 16 | 4 | 0.1 | 82.46 | 51.45 | 40.71 |
|
||||
| 8 | 1 | 0.4 | 67.07 | 55.17 | 48.46 |
|
||||
| 4 | 1 | 0.4 | 50.13 | 44.96 | 40.79 |
|
||||
|
||||
The test script can be found in this [gist](https://gist.github.com/mostlygeek/da429769796ac8a111142e75660820f1). It is a simple curl script that prompts generating a snake game in Python, TypeScript, or Swift. Evaluation metrics were pulled from llama.cpp's logs.
|
||||
|
||||
```bash
|
||||
for lang in "python" "typescript" "swift"; do
|
||||
echo "Generating Snake Game in $lang using $model"
|
||||
curl -s --url http://localhost:8080/v1/chat/completions -d "{\"messages\": [{\"role\": \"system\", \"content\": \"you only write code.\"}, {\"role\": \"user\", \"content\": \"write snake game in $lang\"}], \"temperature\": 0.1, \"model\":\"$model\"}" > /dev/null
|
||||
done
|
||||
```
|
||||
|
||||
Python consistently outperformed Swift in all tests, likely due to the 0.5B draft model being more proficient in generating Python code accepted by the larger 32B model.
|
||||
|
||||
## Chat
|
||||
|
||||
This configuration is for a regular chat use case. It produces approximately 13 tokens/second in typical use, up from ~9 tokens/second with only the 3xP40s. This is great news for P40 owners.
|
||||
|
||||
The models used are:
|
||||
|
||||
* [Bartowski Meta-Llama-3.1-70B-Instruct-GGUF](https://huggingface.co/bartowski/Meta-Llama-3.1-70B-Instruct-GGUF)
|
||||
* [Bartowski Llama-3.2-3B-Instruct-GGUF](https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF)
|
||||
|
||||
```yaml
|
||||
models:
|
||||
"llama-70B":
|
||||
cmd: >
|
||||
/mnt/nvme/llama-server/llama-server-be0e35
|
||||
--host 127.0.0.1 --port 9602
|
||||
--flash-attn --metrics
|
||||
--split-mode row
|
||||
--ctx-size 80000
|
||||
--model /mnt/nvme/models/Meta-Llama-3.1-70B-Instruct-Q4_K_L.gguf
|
||||
-ngl 99
|
||||
--model-draft /mnt/nvme/models/Llama-3.2-3B-Instruct-Q4_K_M.gguf
|
||||
-ngld 99
|
||||
--draft-max 16
|
||||
--draft-min 1
|
||||
--draft-p-min 0.4
|
||||
--device-draft CUDA0
|
||||
--tensor-split 0,1,1,1
|
||||
```
|
||||
|
||||
In this configuration, Llama-3.1-70B is split across three P40s, and Llama-3.2-3B is on the 3090.
|
||||
|
||||
Some flags deserve further explanation:
|
||||
|
||||
* `--split-mode row` - increases inference speeds using multiple P40s by about 30%. This is a P40-specific feature.
|
||||
* `--tensor-split 0,1,1,1` - controls how the main model is split across the GPUs. This means 0% on the 3090 and an even split across the P40s. A value of `--tensor-split 0,5,4,1` would mean 0% on the 3090, 50%, 40%, and 10% respectively across the other P40s. However, this would exceed the available VRAM.
|
||||
* `--ctx-size 80000` - the maximum context size that can fit in the remaining VRAM.
|
||||
|
||||
## What is CUDA0, CUDA1, CUDA2, CUDA3?
|
||||
|
||||
These devices are the IDs used by llama.cpp.
|
||||
|
||||
```bash
|
||||
$ ./llama-server --list-devices
|
||||
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
||||
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
|
||||
ggml_cuda_init: found 4 CUDA devices:
|
||||
Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
|
||||
Device 1: Tesla P40, compute capability 6.1, VMM: yes
|
||||
Device 2: Tesla P40, compute capability 6.1, VMM: yes
|
||||
Device 3: Tesla P40, compute capability 6.1, VMM: yes
|
||||
Available devices:
|
||||
CUDA0: NVIDIA GeForce RTX 3090 (24154 MiB, 23892 MiB free)
|
||||
CUDA1: Tesla P40 (24438 MiB, 24290 MiB free)
|
||||
CUDA2: Tesla P40 (24438 MiB, 24290 MiB free)
|
||||
CUDA3: Tesla P40 (24438 MiB, 24290 MiB free)
|
||||
```
|
||||
Reference in New Issue
Block a user