Fix Monochrome class with new data structure, unit tests. There is work to be done still
All checks were successful
Build ptprnt / build (push) Successful in 3m51s

This commit is contained in:
2025-09-11 10:02:43 +02:00
parent 5132eab6fa
commit 3dc5da6fc8
16 changed files with 436 additions and 131 deletions

View File

@@ -2,7 +2,6 @@
Checks: "clang-diagnostic-*,clang-analyzer-*,cppcoreguidelines-*,modernize-*,-modernize-use-trailing-return-type"
WarningsAsErrors: true
HeaderFilterRegex: ""
AnalyzeTemporaryDtors: false
FormatStyle: google
CheckOptions:
- key: cert-dcl16-c.NewSuffixes

View File

@@ -4,7 +4,7 @@
"name": "Linux",
"compilerPath": "/usr/bin/clang",
"cStandard": "c11",
"cppStandard": "c++17",
"cppStandard": "c++20",
"compileCommands": "${workspaceFolder}/builddir/compile_commands.json",
"browse": {
"path": ["${workspaceFolder}"]

2
.vscode/launch.json vendored
View File

@@ -14,7 +14,7 @@
"cwd": "${fileDirname}",
"environment": [],
"externalConsole": false,
"MIMode": "gdb",
"MIMode": "lldb",
"setupCommands": [
{
"description": "Automatische Strukturierung und Einrückung für \"gdb\" aktivieren",

View File

@@ -83,11 +83,5 @@
"charconv": "cpp",
"*.ipp": "cpp"
},
"clang-tidy.buildPath": "builddir/",
"clangd.onConfigChanged": "restart",
"C_Cpp.default.compileCommands": "/home/moritz/src/ptouch-prnt/builddir/compile_commands.json",
"gcovViewer.buildDirectories": [
"/home/moritz/Projekte/ptouch-prnt/builddir"
],
"C_Cpp.default.configurationProvider": "mesonbuild.mesonbuild"
}

View File

@@ -1,7 +1,22 @@
project('ptprnt', 'cpp',
version: 'v0.1.0-'+run_command('git', 'rev-parse', '--short', 'HEAD', check: true).stdout().strip(),
project(
'ptprnt',
'cpp',
version: 'v0.1.0-' + run_command(
'git',
'rev-parse',
'--short',
'HEAD',
check: true,
).stdout().strip(),
license: 'GPLv3',
default_options : ['c_std=c11', 'cpp_std=c++2a', 'b_sanitize=none', 'b_lto=true', 'b_lto_mode=thin', 'b_thinlto_cache=true']
default_options: [
'c_std=c11',
'cpp_std=c++20',
'b_sanitize=none',
'b_lto=true',
'b_lto_mode=thin',
'b_thinlto_cache=true',
],
)
usb_dep = dependency('libusb-1.0')
@@ -24,10 +39,10 @@ ptprnt_exe = executable(
'ptprnt',
'src/main.cpp',
install: true,
dependencies : [usb_dep, log_dep, fmt_dep, pangocairo_dep, cli11_dep],
dependencies: [usb_dep, log_dep, fmt_dep, pangocairo_dep, cli11_dep],
include_directories: incdir,
sources: [ptprnt_srcs],
cpp_args : ['-DPROJ_VERSION="'+meson.project_version()+'"'],
cpp_args: ['-DPROJ_VERSION="' + meson.project_version() + '"'],
)

View File

@@ -44,7 +44,7 @@ const PrinterInfo P700Printer::mInfo = {.driverName = "P700",
.pixelLines = 128};
P700Printer::~P700Printer() {
detachUsbDevice();
P700Printer::detachUsbDevice();
if (mUsbHndl) {
mUsbHndl->close();
}
@@ -92,6 +92,7 @@ bool P700Printer::attachUsbDevice(std::shared_ptr<libusbwrap::IUsbDevice> usbHnd
}
if (!usbHndl->detachKernelDriver(0)) {
spdlog::error("Device is already in use or couldn't be detached from kernel: {}",
usbHndl->getLastErrorString());
return false;
@@ -119,13 +120,18 @@ bool P700Printer::detachUsbDevice() {
}
bool P700Printer::printBitmap(const graphics::Bitmap<graphics::ALPHA8>& bitmap) {
// Convert bitmap to MonochromeData and delegate to printMonochromeData
auto pixels = bitmap.getPixelsCpy();
auto mono = graphics::Monochrome(pixels, bitmap.getWidth(), bitmap.getHeight());
auto monoData = mono.getMonochromeData();
return printMonochromeData(monoData);
}
bool P700Printer::printMonochromeData(const graphics::MonochromeData& data) {
#ifdef DRYRUN
spdlog::debug("DRYRUN enabled");
for (unsigned int lineNo = 0; lineNo < bitmap.getHeight(); lineNo++) {
auto line = bitmap.getLine(lineNo);
auto monoLine = graphics::Monochrome(*line);
monoLine.visualize();
}
data.visualize();
#endif
send(p700::commands::RASTER_START);
@@ -134,25 +140,32 @@ bool P700Printer::printBitmap(const graphics::Bitmap<graphics::ALPHA8>& bitmap)
rastercmd[1] = 0x00; // size +1
rastercmd[2] = 0x00;
rastercmd[3] = 0x00; // size -1
for (unsigned int i = 0; i < bitmap.getWidth(); i++) {
auto bmcol = bitmap.getCol(i);
if (!bmcol) {
spdlog::error("Out of bounds bitmap access");
break;
// Process data column by column for the printer
for (uint32_t col = 0; col < data.width; col++) {
std::vector<uint8_t> columnData;
// Extract column data bit by bit
for (uint32_t row = 0; row < data.height; row += 8) {
uint8_t byte = 0;
for (int bit = 0; bit < 8 && (row + bit) < data.height; bit++) {
if (data.getBit(col, row + bit)) {
byte |= (1 << (7 - bit));
}
}
columnData.push_back(byte);
}
auto monocol = graphics::Monochrome(*bmcol);
auto col = monocol.get();
std::vector<uint8_t> buf(0);
std::vector<uint8_t> buf;
buf.insert(buf.begin(), rastercmd.begin(), rastercmd.end());
buf.insert(std::next(buf.begin(), 4), col.begin(), col.end());
buf.insert(std::next(buf.begin(), 4), columnData.begin(), columnData.end());
buf[1] = columnData.size() + 1;
buf[3] = columnData.size() - 1;
buf[1] = col.size() + 1;
buf[3] = col.size() - 1;
if (!send(buf)) {
spdlog::error("Error sending buffer to printer");
break;
};
}
}
send(p700::commands::EJECT);
@@ -160,12 +173,13 @@ bool P700Printer::printBitmap(const graphics::Bitmap<graphics::ALPHA8>& bitmap)
}
bool P700Printer::printLabel(std::unique_ptr<graphics::ILabel> label) {
// not quite sure if I should stack allocate Bitmap, but data is held on the heap anyway (std::vector).
auto bm = graphics::Bitmap<graphics::ALPHA8>(label->getWidth(), label->getHeight());
// Convert label directly to MonochromeData
auto pixels = label->getRaw();
auto mono = graphics::Monochrome(pixels, label->getWidth(), label->getHeight());
auto monoData = mono.getMonochromeData();
spdlog::debug("Label has {}x{}px size", label->getWidth(), label->getHeight());
bm.setPixels(label->getRaw());
printBitmap(bm);
return true;
return printMonochromeData(monoData);
}
bool P700Printer::print() {
@@ -182,7 +196,7 @@ bool P700Printer::send(const std::vector<uint8_t>& data) {
return false;
}
int tx = 0;
size_t tx = 0;
#ifndef DRYRUN
if (!mUsbHndl->bulkTransfer(0x02, data, &tx, 0)) {
@@ -194,7 +208,7 @@ bool P700Printer::send(const std::vector<uint8_t>& data) {
spdlog::trace("USB raw data(len {}): {}", data.size(), spdlog::to_hex(data));
#endif
if (tx != static_cast<int>(data.size())) {
if (tx != data.size()) {
spdlog::error("Could not transfer all data via USB bulk transfer. Only sent {} of {} bytes", tx, data.size());
return false;
}

View File

@@ -71,6 +71,7 @@ class P700Printer : public ::ptprnt::IPrinterDriver {
bool attachUsbDevice(std::shared_ptr<libusbwrap::IUsbDevice> usbHndl) override;
bool detachUsbDevice() override;
bool printBitmap(const graphics::Bitmap<graphics::ALPHA8>& bitmap) override;
bool printMonochromeData(const graphics::MonochromeData& data) override;
bool printLabel(const std::unique_ptr<graphics::ILabel> label) override;
bool print() override;

View File

@@ -150,10 +150,10 @@ int PtouchPrint::run() {
}
label->create(labelText);
label->writeToPng("./testlabel.png");
if (!printer->printLabel(std::move(label))) {
/*if (!printer->printLabel(std::move(label))) {
spdlog::error("An error occured while printing");
return -1;
}
}*/
return 0;
}

View File

@@ -21,8 +21,8 @@
#include <spdlog/spdlog.h>
#include <iterator>
#include <optional>
#include <ranges>
#include <stdexcept>
#include <vector>
namespace ptprnt::graphics {
@@ -56,35 +56,29 @@ template <class T>
}
template <class T>
[[nodiscard]] std::optional<std::vector<T>> Bitmap<T>::getLine(uint16_t line) const {
if (line >= mHeight) {
// out of bound
return std::nullopt;
[[nodiscard]] std::vector<T> Bitmap<T>::getLine(const uint16_t lineNo) const {
if (lineNo >= mHeight) {
throw(std::out_of_range("Line is out of range!"));
}
auto lineStart = mPixels.begin() + (line * mWidth);
auto lineEnd = mPixels.begin() + ((line + 1) * mWidth);
auto lineStart = mPixels.begin() + (lineNo * mWidth);
auto lineEnd = mPixels.begin() + ((lineNo + 1) * mWidth);
return std::vector<T>(lineStart, lineEnd);
}
// TODO: I guess this is borked
template <class T>
[[nodiscard]] std::optional<std::vector<T>> Bitmap<T>::getCol(uint16_t col) const {
if (col >= mWidth) {
// out of bound
return std::nullopt;
[[nodiscard]] std::vector<T> Bitmap<T>::getCol(const uint16_t colNo) const {
if (colNo >= mWidth) {
throw(std::out_of_range("Col is out of range!"));
}
// first pixel is always beginning of the col
std::vector<T> colPixels(mHeight);
auto it = std::next(mPixels.begin(), col);
for (auto& colElement : colPixels) {
colElement = *it;
std::advance(it, mWidth);
std::vector<T> col{};
col.reserve(mHeight);
for (size_t i{0}; i <= mPixels.size(); i++) {
if (i % mWidth == colNo) {
col.push_back(mPixels[i]);
}
}
return colPixels;
return col;
}
} // namespace ptprnt::graphics

View File

@@ -19,19 +19,17 @@
#pragma once
#include <stdint.h>
#include <cstdint>
#include <memory>
#include <optional>
#include <span>
#include <vector>
namespace ptprnt::graphics {
typedef uint8_t ALPHA8; // Alpha only, 8 bit per pixel
typedef uint32_t RGBX8; // RGB, least significant byte unused, 8 bit per channel
typedef uint32_t RGBA8; // RGB, least significant byte alpha, 8 bit per channel
typedef uint32_t ARGB8; // RGB, most significant byte alpha, 8 bit per channel
using ALPHA8 = std::uint8_t; // Alpha only, 8 bit per pixel
using RGBX8 = std::uint32_t; // RGB, least significant byte unused, 8 bit per channel
using RGBA8 = std::uint32_t; // RGB, least significant byte alpha, 8 bit per channel
using ARGB8 = std::uint32_t; // RGB, most significant byte alpha, 8 bit per channel
template <class T>
class Bitmap {
@@ -48,8 +46,8 @@ class Bitmap {
[[nodiscard]] uint16_t getHeight() const;
bool setPixels(const std::vector<T>& pixels);
[[nodiscard]] std::vector<T> getPixelsCpy() const;
[[nodiscard]] std::optional<std::vector<T>> getLine(uint16_t line) const;
[[nodiscard]] std::optional<std::vector<T>> getCol(uint16_t col) const;
[[nodiscard]] std::vector<T> getLine(uint16_t line) const;
[[nodiscard]] std::vector<T> getCol(uint16_t col) const;
void visualize() const;
private:

View File

@@ -25,7 +25,11 @@
#include <vector>
namespace ptprnt::graphics {
Monochrome::Monochrome(const std::vector<uint8_t>& grayscale) : mPixels(std::move(grayscale)) {}
Monochrome::Monochrome(const std::vector<uint8_t>& grayscale, uint32_t width, uint32_t height)
: mPixels(grayscale), mWidth(width), mHeight(height) {}
Monochrome::Monochrome(const std::span<uint8_t> grayscale, uint32_t width, uint32_t height)
: mPixels(grayscale.begin(), grayscale.end()), mWidth(width), mHeight(height) {}
void Monochrome::setThreshold(uint8_t threshhold) {
mThreshhold = threshhold;
@@ -36,23 +40,30 @@ void Monochrome::invert(bool shouldInvert) {
}
std::vector<uint8_t> Monochrome::get() {
std::vector<uint8_t> outPixels(
(static_cast<unsigned int>((mPixels.size() / 8)) + (std::floor(mPixels.size() % 8 + 0.9))));
unsigned int outIndex = 0;
// Calculate output size for packed format: (width + 7) / 8 bytes per row
uint32_t stride = (mWidth + 7) / 8;
size_t outputSize = stride * mHeight;
std::vector<uint8_t> outPixels(outputSize, 0);
for (unsigned int byteNo = 0; byteNo < mPixels.size(); byteNo += 8) {
for (unsigned int bitNo = 0; bitNo <= 7 && (byteNo + bitNo < mPixels.size()); bitNo++) {
if (mPixels[byteNo + bitNo] > mThreshhold) {
outPixels[outIndex] |= (1 << (7 - bitNo));
} else {
outPixels[outIndex] &= ~(1 << (7 - bitNo));
// Pack pixels row by row for correct 2D layout
for (uint32_t y = 0; y < mHeight; ++y) {
for (uint32_t x = 0; x < mWidth; ++x) {
size_t pixelIndex = y * mWidth + x; // Row-major index in input
size_t byteIndex = y * stride + x / 8; // Byte index in packed output
size_t bitIndex = 7 - (x % 8); // MSB first
// Convert grayscale pixel to bit based on threshold
bool pixelOn = mPixels[pixelIndex] > mThreshhold;
if (mShouldInvert) {
pixelOn = !pixelOn;
}
if (pixelOn) {
outPixels[byteIndex] |= (1 << bitIndex);
}
}
if (mShouldInvert) {
outPixels[outIndex] = ~outPixels[outIndex];
}
outIndex++;
}
return outPixels;
}
@@ -71,4 +82,164 @@ void Monochrome::visualize() {
std::cout << std::endl;
}
MonochromeData Monochrome::getMonochromeData() {
auto processedBytes = get();
// Calculate stride based on packed monochrome data (1 bit per pixel, 8 pixels per byte)
auto stride = static_cast<uint32_t>((mWidth + 7) / 8);
return {std::move(processedBytes), stride, Orientation::LANDSCAPE, mWidth, mHeight};
}
// MonochromeData transformation methods implementation
void MonochromeData::transformTo(Orientation targetOrientation) {
if (orientation == targetOrientation) {
return; // No transformation needed
}
auto rotatedData = createRotatedData(targetOrientation);
bytes = std::move(rotatedData);
// Update dimensions and stride based on rotation
switch (targetOrientation) {
case Orientation::PORTRAIT:
case Orientation::PORTRAIT_FLIPPED:
// Swap width and height for portrait orientations
std::swap(width, height);
stride = (width + 7) / 8; // Recalculate stride for new width
break;
case Orientation::LANDSCAPE:
case Orientation::LANDSCAPE_FLIPPED:
// Keep original stride calculation
stride = (width + 7) / 8;
break;
}
orientation = targetOrientation;
}
bool MonochromeData::getBit(uint32_t x, uint32_t y) const {
if (x >= width || y >= height) {
return false;
}
uint32_t byteIndex = y * stride + x / 8;
uint32_t bitIndex = 7 - (x % 8); // MSB first
if (byteIndex >= bytes.size()) {
return false;
}
return (bytes[byteIndex] >> bitIndex) & 1;
}
void MonochromeData::setBit(uint32_t x, uint32_t y, bool value) {
if (x >= width || y >= height) {
return;
}
uint32_t byteIndex = y * stride + x / 8;
uint32_t bitIndex = 7 - (x % 8); // MSB first
if (byteIndex >= bytes.size()) {
return;
}
if (value) {
bytes[byteIndex] |= (1 << bitIndex);
} else {
bytes[byteIndex] &= ~(1 << bitIndex);
}
}
std::vector<uint8_t> MonochromeData::createRotatedData(Orientation targetOrientation) const {
uint32_t newWidth, newHeight;
// Determine new dimensions
switch (targetOrientation) {
case Orientation::PORTRAIT:
case Orientation::PORTRAIT_FLIPPED:
newWidth = height;
newHeight = width;
break;
case Orientation::LANDSCAPE:
case Orientation::LANDSCAPE_FLIPPED:
default:
newWidth = width;
newHeight = height;
break;
}
uint32_t newStride = (newWidth + 7) / 8;
std::vector<uint8_t> newBytes(newStride * newHeight, 0);
// Create a temporary MonochromeData for the new image
MonochromeData tempData;
tempData.bytes = std::move(newBytes);
tempData.stride = newStride;
tempData.width = newWidth;
tempData.height = newHeight;
tempData.orientation = targetOrientation;
// Copy pixels with appropriate transformation
for (uint32_t y = 0; y < height; ++y) {
for (uint32_t x = 0; x < width; ++x) {
bool pixel = getBit(x, y);
uint32_t newX, newY;
switch (targetOrientation) {
case Orientation::LANDSCAPE:
newX = x;
newY = y;
break;
case Orientation::PORTRAIT: // 90 degrees clockwise
newX = height - 1 - y;
newY = x;
break;
case Orientation::LANDSCAPE_FLIPPED: // 180 degrees
newX = width - 1 - x;
newY = height - 1 - y;
break;
case Orientation::PORTRAIT_FLIPPED: // 270 degrees clockwise
newX = y;
newY = width - 1 - x;
break;
}
tempData.setBit(newX, newY, pixel);
}
}
return std::move(tempData.bytes);
}
void MonochromeData::visualize() const {
std::cout << "MonochromeData visualization (" << width << "x" << height << ", orientation: ";
switch (orientation) {
case Orientation::LANDSCAPE:
std::cout << "LANDSCAPE";
break;
case Orientation::PORTRAIT:
std::cout << "PORTRAIT";
break;
case Orientation::LANDSCAPE_FLIPPED:
std::cout << "LANDSCAPE_FLIPPED";
break;
case Orientation::PORTRAIT_FLIPPED:
std::cout << "PORTRAIT_FLIPPED";
break;
}
std::cout << "):" << std::endl;
// Print the image row by row
for (uint32_t y = 0; y < height; ++y) {
for (uint32_t x = 0; x < width; ++x) {
bool pixel = getBit(x, y);
std::cout << (pixel ? "" : ".");
}
std::cout << std::endl;
}
std::cout << std::endl;
}
} // namespace ptprnt::graphics

View File

@@ -20,22 +20,61 @@
#pragma once
#include <cstdint>
#include <span>
#include <vector>
#include "graphics/Bitmap.hpp"
namespace ptprnt::graphics {
enum class Orientation {
LANDSCAPE = 0, // 0 degrees
PORTRAIT = 1, // 90 degrees clockwise
LANDSCAPE_FLIPPED = 2, // 180 degrees
PORTRAIT_FLIPPED = 3 // 270 degrees clockwise (90 counter-clockwise)
};
struct MonochromeData {
std::vector<uint8_t> bytes;
uint32_t stride;
Orientation orientation;
uint32_t width; // Width in pixels
uint32_t height; // Height in pixels
MonochromeData() : stride(0), orientation(Orientation::LANDSCAPE), width(0), height(0) {}
MonochromeData(std::vector<uint8_t> data, uint32_t stride_bytes, Orientation orient = Orientation::LANDSCAPE,
uint32_t w = 0, uint32_t h = 0)
: bytes(std::move(data)), stride(stride_bytes), orientation(orient), width(w), height(h) {}
// Transform the image data to the target orientation
void transformTo(Orientation targetOrientation);
// Visualize the monochrome data on stdout
void visualize() const;
// Helper methods for orientation transformations
[[nodiscard]] bool getBit(uint32_t x, uint32_t y) const;
void setBit(uint32_t x, uint32_t y, bool value);
[[nodiscard]] std::vector<uint8_t> createRotatedData(Orientation targetOrientation) const;
};
class Monochrome {
public:
Monochrome(const std::vector<uint8_t>& grayscale);
Monochrome(const std::vector<uint8_t>& grayscale, uint32_t width, uint32_t height);
Monochrome(const std::span<uint8_t> grayscale, uint32_t width, uint32_t height);
~Monochrome() = default;
void setThreshold(uint8_t);
void invert(bool shouldInvert);
void visualize();
std::vector<uint8_t> get();
MonochromeData getMonochromeData();
private:
const std::vector<uint8_t>& mPixels;
std::vector<uint8_t> mPixels;
uint32_t mWidth;
uint32_t mHeight;
uint8_t mThreshhold = UINT8_MAX / 2;
bool mShouldInvert = false;
};

View File

@@ -1,7 +0,0 @@
{
"text" : " Hello",
"font" : "FreeSans 32",
"single-paragraph" : true,
"alignment" : "center",
"height" : 0
}

View File

@@ -23,6 +23,7 @@
#include <string_view>
#include "graphics/Bitmap.hpp"
#include "graphics/Monochrome.hpp"
#include "graphics/interface/ILabel.hpp"
#include "interface/IPrinterTypes.hpp"
#include "libusbwrap/interface/IUsbDevice.hpp"
@@ -40,6 +41,7 @@ class IPrinterDriver {
virtual bool attachUsbDevice(std::shared_ptr<libusbwrap::IUsbDevice> usbHndl) = 0;
virtual bool detachUsbDevice() = 0;
virtual bool printBitmap(const graphics::Bitmap<graphics::ALPHA8>& bitmap) = 0;
virtual bool printMonochromeData(const graphics::MonochromeData& data) = 0;
virtual bool printLabel(const std::unique_ptr<graphics::ILabel> label) = 0;
virtual bool print() = 0;
};

View File

@@ -22,7 +22,6 @@
#include <gtest/gtest.h>
#include <cstdint>
#include <optional>
#include <vector>
TEST(basic_test, Bitmap_createBitmapWithCertainSize_yieldsSpecifiedSize) {
@@ -36,34 +35,28 @@ TEST(basic_test, Bitmap_createBitmapWithCertainSize_yieldsSpecifiedSize) {
TEST(basic_test, Bitmap_getBitmapLineOutsideOfImage_yieldsNullopt) {
auto bm = ptprnt::graphics::Bitmap<ptprnt::graphics::ALPHA8>(16, 8);
// line 8 is out of bounds, count begins with 0
auto outOfBoundsLine = bm.getLine(8);
ASSERT_EQ(std::nullopt, outOfBoundsLine);
EXPECT_ANY_THROW(auto outOfBoundsLine = bm.getLine(8));
}
TEST(basic_test, Bitmap_getBitmapLineInsideOfImage_yieldsValidLineSize) {
auto bm = ptprnt::graphics::Bitmap<ptprnt::graphics::ALPHA8>(16, 8);
auto line = bm.getLine(7);
if (!line) {
FAIL() << "Returned line is invalid";
}
auto lineSize = line->size();
auto bm = ptprnt::graphics::Bitmap<ptprnt::graphics::ALPHA8>(16, 8);
auto line = bm.getLine(7);
auto lineSize = line.size();
ASSERT_EQ(16, lineSize);
}
TEST(basic_test, Bitmap_getBitmapColOutsideOfImage_yieldsNullopt) {
auto bm = ptprnt::graphics::Bitmap<ptprnt::graphics::ALPHA8>(16, 8);
// col 16 is out of bounds, count begins with 0
auto outOfBoundsCol = bm.getCol(16);
ASSERT_EQ(std::nullopt, outOfBoundsCol);
EXPECT_ANY_THROW(auto outOfBoundsCol = bm.getCol(16));
}
TEST(basic_test, Bitmap_getBitmapColInsideOfImage_yieldsValidColSize) {
auto bm = ptprnt::graphics::Bitmap<ptprnt::graphics::ALPHA8>(16, 8);
auto col = bm.getCol(15);
if (!col) {
FAIL() << "Returned Col is invalid";
}
auto colSize = col->size();
auto colSize = col.size();
ASSERT_EQ(8, colSize);
}

View File

@@ -22,22 +22,22 @@
#include <gtest/gtest.h>
TEST(basic_test, Monochrome_convertGrayscale_yieldsMonochrome) {
const std::vector<uint8_t> pixels({0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00});
const std::vector<uint8_t> pixels(
{0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00});
const std::vector<uint8_t> expected({0b10101010, 0b10101010});
auto mono = ptprnt::graphics::Monochrome(pixels);
auto mono = ptprnt::graphics::Monochrome(pixels, 16, 1);
auto out = mono.get();
EXPECT_EQ(out, expected);
}
TEST(basic_test, Monochrome_convertInvertedGrayscale_yieldsInvertedMonochrome) {
const std::vector<uint8_t> pixels({0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00});
const std::vector<uint8_t> pixels(
{0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00});
const std::vector<uint8_t> expected({0b01010101, 0b01010101});
auto mono = ptprnt::graphics::Monochrome(pixels);
auto mono = ptprnt::graphics::Monochrome(pixels, 16, 1);
mono.invert(true);
auto out = mono.get();
@@ -45,11 +45,11 @@ TEST(basic_test, Monochrome_convertInvertedGrayscale_yieldsInvertedMonochrome) {
}
TEST(basic_test, Monochrome_convertWithCustomThreshhold_yieldsMonochromeRespectingThreshhold) {
const std::vector<uint8_t> pixels({0x0F, 0x11, 0x0F, 0x11, 0x0F, 0x11, 0x0F, 0x11, 0x0F, 0x11,
0x0F, 0x11, 0x0F, 0x11, 0x0F, 0x11});
const std::vector<uint8_t> pixels(
{0x0F, 0x11, 0x0F, 0x11, 0x0F, 0x11, 0x0F, 0x11, 0x0F, 0x11, 0x0F, 0x11, 0x0F, 0x11, 0x0F, 0x11});
const std::vector<uint8_t> expected({0b01010101, 0b01010101});
auto mono = ptprnt::graphics::Monochrome(pixels);
auto mono = ptprnt::graphics::Monochrome(pixels, 16, 1);
mono.setThreshold(16);
auto out = mono.get();
@@ -60,12 +60,104 @@ TEST(basic_test, Monochrome_convertNonAlignedPixels_spillsOverIntoNewByte) {
// TODO: We need to find to access the vector without the possiblity of out-of-bounds access
// Ideas: constexpr? compile time check?
GTEST_SKIP() << "Skipping this test, as ASAN will halt as this is an out-of-bounds access";
const std::vector<uint8_t> pixels({0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF});
const std::vector<uint8_t> pixels(
{0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF});
const std::vector<uint8_t> expected({0b10101010, 0b10101010, 0b10000000});
auto mono = ptprnt::graphics::Monochrome(pixels);
auto mono = ptprnt::graphics::Monochrome(pixels, 17, 1);
auto out = mono.get();
EXPECT_EQ(out, expected);
}
TEST(MonochromeData_test, MonochromeData_getMonochromeData_returnsStructWithCorrectData) {
const std::vector<uint8_t> pixels({0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00});
auto mono = ptprnt::graphics::Monochrome(pixels, 8, 1);
auto monoData = mono.getMonochromeData();
EXPECT_EQ(monoData.bytes.size(), 1);
EXPECT_EQ(monoData.bytes[0], 0b10101010);
EXPECT_EQ(monoData.width, 8);
EXPECT_EQ(monoData.height, 1);
EXPECT_EQ(monoData.stride, 1);
EXPECT_EQ(monoData.orientation, ptprnt::graphics::Orientation::LANDSCAPE);
}
TEST(MonochromeData_test, MonochromeData2x2_transformToPortrait_rotatesCorrectly) {
// Create a 2x2 image with a specific pattern
// Pixels are laid out row-major: row0_col0, row0_col1, row1_col0, ...
const std::vector<uint8_t> pixels({0xFF, 0x00, 0x00, 0xFF});
auto mono = ptprnt::graphics::Monochrome(pixels, 2, 2);
auto monoData = mono.getMonochromeData();
monoData.transformTo(ptprnt::graphics::Orientation::PORTRAIT);
// After 90° clockwise rotation:
// Original: █ . -> Rotated: . █
// . █ █ .
EXPECT_EQ(monoData.width, 2);
EXPECT_EQ(monoData.height, 2);
EXPECT_EQ(monoData.orientation, ptprnt::graphics::Orientation::PORTRAIT);
// check pixel data ...................................... x,y = value
EXPECT_EQ(monoData.getBit(0, 0), false); // 0,0 = white
EXPECT_EQ(monoData.getBit(1, 0), true); // 0,1 = black
EXPECT_EQ(monoData.getBit(0, 1), true); // 1,0 = black
EXPECT_EQ(monoData.getBit(1, 1), false); // 1,1 = white
}
TEST(MonochromeData_test, MonochromeData3x2_transformToPortrait_rotatesCorrectly) {
// Create a 2x3 image with a specific pattern
// Pixels are laid out row-major: row0_col0, row0_col1, row0_col2, row1_col0, ...
const std::vector<uint8_t> pixels({0xFF, 0x00, 0x00, 0xFF, 0x00, 0xFF});
auto mono = ptprnt::graphics::Monochrome(pixels, 3, 2);
auto monoData = mono.getMonochromeData();
monoData.transformTo(ptprnt::graphics::Orientation::PORTRAIT);
// After 90° clockwise rotation:
// Original: █ . . -> Rotated: █ █
// █ . █ . .
// █ .
EXPECT_EQ(monoData.width, 2);
EXPECT_EQ(monoData.height, 3);
EXPECT_EQ(monoData.orientation, ptprnt::graphics::Orientation::PORTRAIT);
// check pixel data ...................................... x,y = value
EXPECT_EQ(monoData.getBit(0, 0), true); // 1,1 = black
EXPECT_EQ(monoData.getBit(1, 0), true); // 1,2 = black
EXPECT_EQ(monoData.getBit(0, 1), false); // 2,1 = white
EXPECT_EQ(monoData.getBit(1, 1), false); // 2,2 = white
EXPECT_EQ(monoData.getBit(0, 2), true); // 3,1 = black
EXPECT_EQ(monoData.getBit(1, 2), false); // 3,2 = white
}
TEST(MonochromeData_test, MonochromeData3x2_transformToPortrait_rotatesCorrectlyCounterclockwise) {
// Create a 2x3 image with a specific pattern
// Pixels are laid out row-major: row0_col0, row0_col1, row0_col2, row1_col0, ...
const std::vector<uint8_t> pixels({0xFF, 0x00, 0x00, 0xFF, 0x00, 0xFF});
auto mono = ptprnt::graphics::Monochrome(pixels, 3, 2);
auto monoData = mono.getMonochromeData();
monoData.transformTo(ptprnt::graphics::Orientation::PORTRAIT_FLIPPED);
// After 90° anti-clockwise rotation:
// Original: █ . . -> Rotated: . █
// █ . █ . .
// █ █
EXPECT_EQ(monoData.width, 2);
EXPECT_EQ(monoData.height, 3);
EXPECT_EQ(monoData.orientation, ptprnt::graphics::Orientation::PORTRAIT_FLIPPED);
// check pixel data ...................................... x,y = value
EXPECT_EQ(monoData.getBit(0, 0), false); // 1,1 = white
EXPECT_EQ(monoData.getBit(1, 0), true); // 1,2 = black
EXPECT_EQ(monoData.getBit(0, 1), false); // 2,1 = white
EXPECT_EQ(monoData.getBit(1, 1), false); // 2,2 = white
EXPECT_EQ(monoData.getBit(0, 2), true); // 3,1 = black
EXPECT_EQ(monoData.getBit(1, 2), true); // 3,2 = black
}