Basic I2C functionality

This commit is contained in:
2024-12-29 16:24:54 +01:00
parent 17099b0047
commit 1e648be211
9 changed files with 416 additions and 208 deletions

77
Core/Src/i2c.cpp Normal file
View File

@@ -0,0 +1,77 @@
#include "i2c.hpp"
#include "pindef.hpp"
#include "stm32f4xx_hal_i2c.h"
namespace driver::i2c {
I2c::I2c(I2C_TypeDef* i2c, const uint32_t clockSpeed, const uint32_t dutyCycle,
const uint32_t ownAddress1, const uint32_t addressingMode, const uint32_t dualAddressMode,
const uint32_t ownAddress2, const uint32_t generalCallMode, const uint32_t noStretchMode)
: mHandle{.Instance = i2c,
.Init{.ClockSpeed = clockSpeed,
.DutyCycle = dutyCycle,
.OwnAddress1 = ownAddress1,
.AddressingMode = addressingMode,
.DualAddressMode = dualAddressMode,
.OwnAddress2 = ownAddress2,
.GeneralCallMode = generalCallMode,
.NoStretchMode = noStretchMode},
.pBuffPtr = nullptr,
.XferSize = 0,
.XferCount = 0,
.XferOptions = 0,
.PreviousState = 0,
.hdmatx = nullptr,
.hdmarx = nullptr,
.Lock = HAL_UNLOCKED,
.State = HAL_I2C_STATE_RESET,
.Mode = HAL_I2C_MODE_NONE,
.ErrorCode = HAL_I2C_ERROR_NONE,
.Devaddress = 0,
.Memaddress = 0,
.MemaddSize = 0,
.EventCount = 0} {}
bool I2c::init() {
GPIO_InitTypeDef GPIO_InitStruct = {0};
if (mHandle.Instance == I2C1) {
__HAL_RCC_GPIOB_CLK_ENABLE();
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
GPIO_InitStruct.Pin = GPIO_PIN_6 | GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
__HAL_RCC_I2C1_CLK_ENABLE();
}
return HAL_I2C_Init(&mHandle) == HAL_OK;
}
void I2c::deinit() {}
HAL_StatusTypeDef I2c::write(const uint16_t slaveAddr, const uint16_t memAddr,
std::vector<uint8_t>& data) {
// Slave address needs to be shifted to the left, so that the r/w bit can be set by the HAL method
// Addressing mode for slaves is fixed to 8bit for now...
return HAL_I2C_Mem_Write(&mHandle, slaveAddr << 1, memAddr, I2C_MEMADD_SIZE_8BIT, data.data(),
data.size(), I2C_TIMEOUT_MS);
}
std::pair<HAL_StatusTypeDef, uint8_t> I2c::read(const uint16_t slaveAddr, const uint16_t memAddr) {
uint8_t data;
// Slave address needs to be shifted to the left, so that the r/w bit can be set by the HAL method
auto state = HAL_I2C_Mem_Read(&mHandle, slaveAddr << 1, memAddr, I2C_MEMADD_SIZE_8BIT, &data, 1,
I2C_TIMEOUT_MS);
return {state, data};
}
uint32_t I2c::getLastError() {
return mHandle.ErrorCode;
}
} // namespace driver::i2c

View File

@@ -1,12 +1,22 @@
#include "main.h"
#include <cstdlib>
#include <cstdint>
#include <memory>
#include <string>
#include "gpio.h"
#include "i2c.hpp"
#include "stm32_hal_legacy.h"
#include "stm32f4xx_hal.h"
#include "stm32f4xx_hal_def.h"
#include "stm32f4xx_hal_i2c.h"
#include "usart.hpp"
// needs to be global to be accessible in error handler
std::unique_ptr<driver::usart::Usart> usart2{nullptr};
void SystemClock_Config(void);
void checkHalStatus(HAL_StatusTypeDef);
int main(void) {
@@ -19,20 +29,85 @@ int main(void) {
/* Initialize all configured peripherals */
MX_GPIO_Init();
driver::usart::Usart usart2(USART2, 115200, UART_WORDLENGTH_8B, UART_STOPBITS_1,
UART_PARITY_NONE, UART_MODE_TX_RX, UART_HWCONTROL_NONE,
UART_OVERSAMPLING_16);
usart2 = std::make_unique<driver::usart::Usart>(
driver::usart::Usart(USART2, 115200, UART_WORDLENGTH_8B, UART_STOPBITS_1, UART_PARITY_NONE,
UART_MODE_TX_RX, UART_HWCONTROL_NONE, UART_OVERSAMPLING_16));
usart2.init();
usart2.println("");
usart2.println("\r\nWeight cell init.");
usart2->init();
usart2->println("");
usart2->println("\r\nWeight cell init.");
int i{0};
auto i2c1 = std::make_unique<driver::i2c::I2c>(
I2C1, 100000, I2C_DUTYCYCLE_2, 0x00, I2C_ADDRESSINGMODE_7BIT, I2C_DUALADDRESS_DISABLED,
0x00, I2C_GENERALCALL_DISABLED, I2C_NOSTRETCH_DISABLED);
if (!i2c1->init()) {
usart2->println("Error intializing I2C1!");
usart2->println("Last Error: " + std::to_string(i2c1->getLastError()));
Error_Handler();
} else {
usart2->println("I2C1 intialized successful");
}
// init NAU7802
{
std::vector<uint8_t> data = {0x01};
// reset NAU7802
checkHalStatus(i2c1->write(0x2A, 0x00, data));
usart2->println("Reset nau");
HAL_Delay(100);
// power up digital logic
data[0] = 0x02;
i2c1->write(0x2A, 0x00, data);
HAL_Delay(100);
usart2->println("PUP digi");
// power up analog logic
data[0] = 0x06;
i2c1->write(0x2A, 0x00, data);
HAL_Delay(100);
usart2->println("PUP analog");
// use internal LDO as reference
data[0] = 0x86;
checkHalStatus(i2c1->write(0x2A, 0x00, data));
HAL_Delay(100);
// print status back to usart
auto ret = i2c1->read(0x2A, 0x00);
checkHalStatus(ret.first);
usart2->println("NAU7802 reports state " + std::to_string(ret.second) + " at 0x00");
// REG_CHPS CLK_CHP off
data[0] = 0x30;
checkHalStatus(i2c1->write(0x2A, 0x15, data));
HAL_Delay(100);
}
uint32_t measurement = 0;
auto val = i2c1->read(0x2A, 0x12);
measurement |= (val.second << 16);
val = i2c1->read(0x2A, 0x13);
measurement |= (val.second << 8);
val = i2c1->read(0x2A, 0x14);
measurement |= val.second << 16;
while (1) {
std::string buf{"Iteration #"};
measurement = 0;
val = i2c1->read(0x2A, 0x12);
measurement |= (val.second << 16);
val = i2c1->read(0x2A, 0x13);
measurement |= (val.second << 8);
val = i2c1->read(0x2A, 0x14);
measurement |= val.second << 16;
usart2->println("Measurement " + std::to_string(measurement) + " counts");
usart2.println(buf + std::to_string(i++));
HAL_Delay(1000);
}
}
@@ -75,6 +150,17 @@ void SystemClock_Config(void) {
}
}
void checkHalStatus(HAL_StatusTypeDef status) {
if (status == HAL_OK) {
return;
}
if (usart2 == nullptr) {
Error_Handler();
return; // never reached
}
usart2->println("HAL Status not okay! Calling Error Handler");
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
@@ -82,6 +168,10 @@ void SystemClock_Config(void) {
void Error_Handler(void) {
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
if (usart2 != nullptr) {
usart2->println("=== ERROR HANDLER ===");
usart2->println("entering infinite loop...");
}
__disable_irq();
while (1) {}
/* USER CODE END Error_Handler_Debug */

View File

@@ -12,13 +12,29 @@ namespace driver::usart {
Usart::Usart(USART_TypeDef* usart, uint32_t baudRate, uint32_t wordLength, uint32_t stopBits,
uint32_t parity, uint32_t mode, uint32_t hwFlowCtl, uint32_t overSampling)
: mHandle{.Instance = usart,
.Init{.BaudRate = baudRate,
.WordLength = wordLength,
.StopBits = stopBits,
.Parity = parity,
.Mode = mode,
.HwFlowCtl = hwFlowCtl,
.OverSampling = overSampling}} {}
.Init{
.BaudRate = baudRate,
.WordLength = wordLength,
.StopBits = stopBits,
.Parity = parity,
.Mode = mode,
.HwFlowCtl = hwFlowCtl,
.OverSampling = overSampling,
},
.pTxBuffPtr = nullptr,
.TxXferSize = 0,
.TxXferCount = 0,
.pRxBuffPtr = nullptr,
.RxXferSize = 0,
.RxXferCount = 0,
.ReceptionType = HAL_UART_RECEPTION_STANDARD,
.RxEventType = HAL_UART_RXEVENT_TC,
.hdmatx = nullptr,
.hdmarx = nullptr,
.Lock = HAL_UNLOCKED,
.gState = HAL_UART_STATE_RESET,
.RxState = HAL_UART_STATE_RESET,
.ErrorCode = 0} {}
bool Usart::init() {
GPIO_InitTypeDef GPIO_InitStruct;
@@ -38,7 +54,7 @@ bool Usart::init() {
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
return HAL_UART_Init(&mHandle) != HAL_OK;
return HAL_UART_Init(&mHandle) == HAL_OK;
}
void Usart::deinit() {
@@ -60,14 +76,9 @@ void Usart::println(const std::string_view str) {
}
void Usart::tx(const std::string_view range) {
for (uint32_t pt{0}; pt <= range.size(); pt += TX_BUFSIZE) {
uint8_t txLen{TX_BUFSIZE};
if (range.length() < TX_BUFSIZE) {
txLen = range.length();
}
HAL_UART_Transmit(&mHandle, reinterpret_cast<const uint8_t*>(range.begin() + pt), txLen,
TX_TIMEOUT_MS);
}
HAL_UART_Transmit(&mHandle, reinterpret_cast<const uint8_t*>(range.begin()), range.size(),
TX_TIMEOUT_MS);
};
} // namespace driver::usart