* cmd,misc: move misc binaries to cmd/ * docs: add docs and move examples/ there * misc: remove unused misc/assets dir * docs: add configuration.md * update README with better structure Updates: #334
4.0 KiB
Optimizing Code Generation with llama-swap
Finding the best mix of settings for your hardware can be time consuming. This example demonstrates using a custom configuration file to automate testing different scenarios to find the an optimal configuration.
The benchmark writes a snake game in Python, TypeScript, and Swift using the Qwen 2.5 Coder models. The experiments were done using a 3090 and a P40.
Benchmark Scenarios
Three scenarios are tested:
- 3090-only: Just the main model on the 3090
- 3090-with-draft: the main and draft models on the 3090
- 3090-P40-draft: the main model on the 3090 with the draft model offloaded to the P40
Available Devices
Use the following command to list available devices IDs for the configuration:
$ /mnt/nvme/llama-server/llama-server-f3252055 --list-devices
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 4 CUDA devices:
Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
Device 1: Tesla P40, compute capability 6.1, VMM: yes
Device 2: Tesla P40, compute capability 6.1, VMM: yes
Device 3: Tesla P40, compute capability 6.1, VMM: yes
Available devices:
CUDA0: NVIDIA GeForce RTX 3090 (24154 MiB, 406 MiB free)
CUDA1: Tesla P40 (24438 MiB, 22942 MiB free)
CUDA2: Tesla P40 (24438 MiB, 24144 MiB free)
CUDA3: Tesla P40 (24438 MiB, 24144 MiB free)
Configuration
The configuration file, benchmark-config.yaml, defines the three scenarios:
models:
"3090-only":
proxy: "http://127.0.0.1:9503"
cmd: >
/mnt/nvme/llama-server/llama-server-f3252055
--host 127.0.0.1 --port 9503
--flash-attn
--slots
--model /mnt/nvme/models/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
-ngl 99
--device CUDA0
--ctx-size 32768
--cache-type-k q8_0 --cache-type-v q8_0
"3090-with-draft":
proxy: "http://127.0.0.1:9503"
# --ctx-size 28500 max that can fit on 3090 after draft model
cmd: >
/mnt/nvme/llama-server/llama-server-f3252055
--host 127.0.0.1 --port 9503
--flash-attn
--slots
--model /mnt/nvme/models/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
-ngl 99
--device CUDA0
--model-draft /mnt/nvme/models/Qwen2.5-Coder-0.5B-Instruct-Q8_0.gguf
-ngld 99
--draft-max 16
--draft-min 4
--draft-p-min 0.4
--device-draft CUDA0
--ctx-size 28500
--cache-type-k q8_0 --cache-type-v q8_0
"3090-P40-draft":
proxy: "http://127.0.0.1:9503"
cmd: >
/mnt/nvme/llama-server/llama-server-f3252055
--host 127.0.0.1 --port 9503
--flash-attn --metrics
--slots
--model /mnt/nvme/models/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
-ngl 99
--device CUDA0
--model-draft /mnt/nvme/models/Qwen2.5-Coder-0.5B-Instruct-Q8_0.gguf
-ngld 99
--draft-max 16
--draft-min 4
--draft-p-min 0.4
--device-draft CUDA1
--ctx-size 32768
--cache-type-k q8_0 --cache-type-v q8_0
Note in the
3090-with-draftscenario the--ctx-sizehad to be reduced from 32768 to to accommodate the draft model.
Running the Benchmark
To run the benchmark, execute the following commands:
llama-swap -config benchmark-config.yaml./run-benchmark.sh http://localhost:8080 "3090-only" "3090-with-draft" "3090-P40-draft"
The benchmark script generates a CSV output of the results, which can be converted to a Markdown table for readability.
Results (tokens/second)
| model | python | typescript | swift |
|---|---|---|---|
| 3090-only | 34.03 | 34.01 | 34.01 |
| 3090-with-draft | 106.65 | 70.48 | 57.89 |
| 3090-P40-draft | 81.54 | 60.35 | 46.50 |
Many different factors, like the programming language, can have big impacts on the performance gains. However, with a custom configuration file for benchmarking it is easy to test the different variations to discover what's best for your hardware.
Happy coding!