* cmd,misc: move misc binaries to cmd/ * docs: add docs and move examples/ there * misc: remove unused misc/assets dir * docs: add configuration.md * update README with better structure Updates: #334
123 lines
4.0 KiB
Markdown
123 lines
4.0 KiB
Markdown
# Optimizing Code Generation with llama-swap
|
|
|
|
Finding the best mix of settings for your hardware can be time consuming. This example demonstrates using a custom configuration file to automate testing different scenarios to find the an optimal configuration.
|
|
|
|
The benchmark writes a snake game in Python, TypeScript, and Swift using the Qwen 2.5 Coder models. The experiments were done using a 3090 and a P40.
|
|
|
|
**Benchmark Scenarios**
|
|
|
|
Three scenarios are tested:
|
|
|
|
- 3090-only: Just the main model on the 3090
|
|
- 3090-with-draft: the main and draft models on the 3090
|
|
- 3090-P40-draft: the main model on the 3090 with the draft model offloaded to the P40
|
|
|
|
**Available Devices**
|
|
|
|
Use the following command to list available devices IDs for the configuration:
|
|
|
|
```
|
|
$ /mnt/nvme/llama-server/llama-server-f3252055 --list-devices
|
|
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
|
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
|
|
ggml_cuda_init: found 4 CUDA devices:
|
|
Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
|
|
Device 1: Tesla P40, compute capability 6.1, VMM: yes
|
|
Device 2: Tesla P40, compute capability 6.1, VMM: yes
|
|
Device 3: Tesla P40, compute capability 6.1, VMM: yes
|
|
Available devices:
|
|
CUDA0: NVIDIA GeForce RTX 3090 (24154 MiB, 406 MiB free)
|
|
CUDA1: Tesla P40 (24438 MiB, 22942 MiB free)
|
|
CUDA2: Tesla P40 (24438 MiB, 24144 MiB free)
|
|
CUDA3: Tesla P40 (24438 MiB, 24144 MiB free)
|
|
```
|
|
|
|
**Configuration**
|
|
|
|
The configuration file, `benchmark-config.yaml`, defines the three scenarios:
|
|
|
|
```yaml
|
|
models:
|
|
"3090-only":
|
|
proxy: "http://127.0.0.1:9503"
|
|
cmd: >
|
|
/mnt/nvme/llama-server/llama-server-f3252055
|
|
--host 127.0.0.1 --port 9503
|
|
--flash-attn
|
|
--slots
|
|
|
|
--model /mnt/nvme/models/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
|
|
-ngl 99
|
|
--device CUDA0
|
|
|
|
--ctx-size 32768
|
|
--cache-type-k q8_0 --cache-type-v q8_0
|
|
|
|
"3090-with-draft":
|
|
proxy: "http://127.0.0.1:9503"
|
|
# --ctx-size 28500 max that can fit on 3090 after draft model
|
|
cmd: >
|
|
/mnt/nvme/llama-server/llama-server-f3252055
|
|
--host 127.0.0.1 --port 9503
|
|
--flash-attn
|
|
--slots
|
|
|
|
--model /mnt/nvme/models/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
|
|
-ngl 99
|
|
--device CUDA0
|
|
|
|
--model-draft /mnt/nvme/models/Qwen2.5-Coder-0.5B-Instruct-Q8_0.gguf
|
|
-ngld 99
|
|
--draft-max 16
|
|
--draft-min 4
|
|
--draft-p-min 0.4
|
|
--device-draft CUDA0
|
|
|
|
--ctx-size 28500
|
|
--cache-type-k q8_0 --cache-type-v q8_0
|
|
|
|
"3090-P40-draft":
|
|
proxy: "http://127.0.0.1:9503"
|
|
cmd: >
|
|
/mnt/nvme/llama-server/llama-server-f3252055
|
|
--host 127.0.0.1 --port 9503
|
|
--flash-attn --metrics
|
|
--slots
|
|
--model /mnt/nvme/models/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf
|
|
-ngl 99
|
|
--device CUDA0
|
|
|
|
--model-draft /mnt/nvme/models/Qwen2.5-Coder-0.5B-Instruct-Q8_0.gguf
|
|
-ngld 99
|
|
--draft-max 16
|
|
--draft-min 4
|
|
--draft-p-min 0.4
|
|
--device-draft CUDA1
|
|
|
|
--ctx-size 32768
|
|
--cache-type-k q8_0 --cache-type-v q8_0
|
|
```
|
|
|
|
> Note in the `3090-with-draft` scenario the `--ctx-size` had to be reduced from 32768 to to accommodate the draft model.
|
|
|
|
|
|
**Running the Benchmark**
|
|
|
|
To run the benchmark, execute the following commands:
|
|
|
|
1. `llama-swap -config benchmark-config.yaml`
|
|
1. `./run-benchmark.sh http://localhost:8080 "3090-only" "3090-with-draft" "3090-P40-draft"`
|
|
|
|
The [benchmark script](run-benchmark.sh) generates a CSV output of the results, which can be converted to a Markdown table for readability.
|
|
|
|
**Results (tokens/second)**
|
|
|
|
| model | python | typescript | swift |
|
|
|-----------------|--------|------------|-------|
|
|
| 3090-only | 34.03 | 34.01 | 34.01 |
|
|
| 3090-with-draft | 106.65 | 70.48 | 57.89 |
|
|
| 3090-P40-draft | 81.54 | 60.35 | 46.50 |
|
|
|
|
Many different factors, like the programming language, can have big impacts on the performance gains. However, with a custom configuration file for benchmarking it is easy to test the different variations to discover what's best for your hardware.
|
|
|
|
Happy coding! |