Fix Monochrome class with new data structure, unit tests. There is work to be done still
All checks were successful
Build ptprnt / build (push) Successful in 3m51s

This commit is contained in:
2025-09-11 10:02:43 +02:00
parent 5132eab6fa
commit 3dc5da6fc8
16 changed files with 436 additions and 131 deletions

View File

@@ -25,7 +25,11 @@
#include <vector>
namespace ptprnt::graphics {
Monochrome::Monochrome(const std::vector<uint8_t>& grayscale) : mPixels(std::move(grayscale)) {}
Monochrome::Monochrome(const std::vector<uint8_t>& grayscale, uint32_t width, uint32_t height)
: mPixels(grayscale), mWidth(width), mHeight(height) {}
Monochrome::Monochrome(const std::span<uint8_t> grayscale, uint32_t width, uint32_t height)
: mPixels(grayscale.begin(), grayscale.end()), mWidth(width), mHeight(height) {}
void Monochrome::setThreshold(uint8_t threshhold) {
mThreshhold = threshhold;
@@ -36,23 +40,30 @@ void Monochrome::invert(bool shouldInvert) {
}
std::vector<uint8_t> Monochrome::get() {
std::vector<uint8_t> outPixels(
(static_cast<unsigned int>((mPixels.size() / 8)) + (std::floor(mPixels.size() % 8 + 0.9))));
unsigned int outIndex = 0;
// Calculate output size for packed format: (width + 7) / 8 bytes per row
uint32_t stride = (mWidth + 7) / 8;
size_t outputSize = stride * mHeight;
std::vector<uint8_t> outPixels(outputSize, 0);
for (unsigned int byteNo = 0; byteNo < mPixels.size(); byteNo += 8) {
for (unsigned int bitNo = 0; bitNo <= 7 && (byteNo + bitNo < mPixels.size()); bitNo++) {
if (mPixels[byteNo + bitNo] > mThreshhold) {
outPixels[outIndex] |= (1 << (7 - bitNo));
} else {
outPixels[outIndex] &= ~(1 << (7 - bitNo));
// Pack pixels row by row for correct 2D layout
for (uint32_t y = 0; y < mHeight; ++y) {
for (uint32_t x = 0; x < mWidth; ++x) {
size_t pixelIndex = y * mWidth + x; // Row-major index in input
size_t byteIndex = y * stride + x / 8; // Byte index in packed output
size_t bitIndex = 7 - (x % 8); // MSB first
// Convert grayscale pixel to bit based on threshold
bool pixelOn = mPixels[pixelIndex] > mThreshhold;
if (mShouldInvert) {
pixelOn = !pixelOn;
}
if (pixelOn) {
outPixels[byteIndex] |= (1 << bitIndex);
}
}
if (mShouldInvert) {
outPixels[outIndex] = ~outPixels[outIndex];
}
outIndex++;
}
return outPixels;
}
@@ -71,4 +82,164 @@ void Monochrome::visualize() {
std::cout << std::endl;
}
MonochromeData Monochrome::getMonochromeData() {
auto processedBytes = get();
// Calculate stride based on packed monochrome data (1 bit per pixel, 8 pixels per byte)
auto stride = static_cast<uint32_t>((mWidth + 7) / 8);
return {std::move(processedBytes), stride, Orientation::LANDSCAPE, mWidth, mHeight};
}
// MonochromeData transformation methods implementation
void MonochromeData::transformTo(Orientation targetOrientation) {
if (orientation == targetOrientation) {
return; // No transformation needed
}
auto rotatedData = createRotatedData(targetOrientation);
bytes = std::move(rotatedData);
// Update dimensions and stride based on rotation
switch (targetOrientation) {
case Orientation::PORTRAIT:
case Orientation::PORTRAIT_FLIPPED:
// Swap width and height for portrait orientations
std::swap(width, height);
stride = (width + 7) / 8; // Recalculate stride for new width
break;
case Orientation::LANDSCAPE:
case Orientation::LANDSCAPE_FLIPPED:
// Keep original stride calculation
stride = (width + 7) / 8;
break;
}
orientation = targetOrientation;
}
bool MonochromeData::getBit(uint32_t x, uint32_t y) const {
if (x >= width || y >= height) {
return false;
}
uint32_t byteIndex = y * stride + x / 8;
uint32_t bitIndex = 7 - (x % 8); // MSB first
if (byteIndex >= bytes.size()) {
return false;
}
return (bytes[byteIndex] >> bitIndex) & 1;
}
void MonochromeData::setBit(uint32_t x, uint32_t y, bool value) {
if (x >= width || y >= height) {
return;
}
uint32_t byteIndex = y * stride + x / 8;
uint32_t bitIndex = 7 - (x % 8); // MSB first
if (byteIndex >= bytes.size()) {
return;
}
if (value) {
bytes[byteIndex] |= (1 << bitIndex);
} else {
bytes[byteIndex] &= ~(1 << bitIndex);
}
}
std::vector<uint8_t> MonochromeData::createRotatedData(Orientation targetOrientation) const {
uint32_t newWidth, newHeight;
// Determine new dimensions
switch (targetOrientation) {
case Orientation::PORTRAIT:
case Orientation::PORTRAIT_FLIPPED:
newWidth = height;
newHeight = width;
break;
case Orientation::LANDSCAPE:
case Orientation::LANDSCAPE_FLIPPED:
default:
newWidth = width;
newHeight = height;
break;
}
uint32_t newStride = (newWidth + 7) / 8;
std::vector<uint8_t> newBytes(newStride * newHeight, 0);
// Create a temporary MonochromeData for the new image
MonochromeData tempData;
tempData.bytes = std::move(newBytes);
tempData.stride = newStride;
tempData.width = newWidth;
tempData.height = newHeight;
tempData.orientation = targetOrientation;
// Copy pixels with appropriate transformation
for (uint32_t y = 0; y < height; ++y) {
for (uint32_t x = 0; x < width; ++x) {
bool pixel = getBit(x, y);
uint32_t newX, newY;
switch (targetOrientation) {
case Orientation::LANDSCAPE:
newX = x;
newY = y;
break;
case Orientation::PORTRAIT: // 90 degrees clockwise
newX = height - 1 - y;
newY = x;
break;
case Orientation::LANDSCAPE_FLIPPED: // 180 degrees
newX = width - 1 - x;
newY = height - 1 - y;
break;
case Orientation::PORTRAIT_FLIPPED: // 270 degrees clockwise
newX = y;
newY = width - 1 - x;
break;
}
tempData.setBit(newX, newY, pixel);
}
}
return std::move(tempData.bytes);
}
void MonochromeData::visualize() const {
std::cout << "MonochromeData visualization (" << width << "x" << height << ", orientation: ";
switch (orientation) {
case Orientation::LANDSCAPE:
std::cout << "LANDSCAPE";
break;
case Orientation::PORTRAIT:
std::cout << "PORTRAIT";
break;
case Orientation::LANDSCAPE_FLIPPED:
std::cout << "LANDSCAPE_FLIPPED";
break;
case Orientation::PORTRAIT_FLIPPED:
std::cout << "PORTRAIT_FLIPPED";
break;
}
std::cout << "):" << std::endl;
// Print the image row by row
for (uint32_t y = 0; y < height; ++y) {
for (uint32_t x = 0; x < width; ++x) {
bool pixel = getBit(x, y);
std::cout << (pixel ? "" : ".");
}
std::cout << std::endl;
}
std::cout << std::endl;
}
} // namespace ptprnt::graphics